Chemistry @ IISER Pune
2006-2014
Chemistry @ IISER Pune
2006-2014

Indian Institute of Science Education and Research (IISER) Pune
I have great pleasure in presenting the book "Chemistry @ IISER Pune 2006-2014" which chronicles the activities of the Chemistry Program at IISER Pune since the inception of the Institute in 2006. The chemistry teaching which started with general chemistry in semester of August 2006 in a modest way at the level of 1 year BS, has now expanded with a range of courses encompassing not only the basic four pillars – inorganic, organic, theoretical and physical – but also into the interdisciplinary areas of chemical biology, material science, polymer chemistry, spectroscopy and nanoscience. The teaching of various courses is integrated with the development of practical skills in laboratory, which is so essential in chemistry and fused to a complete one-year research programme. It is gratifying to see that several research publications are emanating from UG research. Students have the option of taking up a UG research project not only at IISER Pune but also at other research Institutes in India, some abroad, and in industry as well. The aim of chemistry@iiserpune is to train students UG students in the breadth, depth and impart research experience before they graduate. In 2014, the BS-MS chemistry programme of the Institute was accredited by the Royal Society of Chemistry, UK – the first Institute in India to receive such recognition and this signifies the international equivalence of our BS-MS course.

The Institute started enrolling students in year 2007-2008 right from the day the first faculty member joined. At present, there are 163 PhD students in Chemistry (more than 40% of the total IISER Pune PhD students) and 11 have already received their PhD degrees till December 2014. Recently Institute post-doctoral programme in chemistry was introduced and 5 fellows have joined the programme. In 2008, a small research laboratory to accommodate 20-25 students was established in the transit campus in Sai Trinity building, where more than 10 faculty members shared laboratory with active research under limited and trying conditions, without any sense of temporariness sinking. Even in the transit lab, high end instrumentation such as jet spectrometer coupled with TOF, High performance computer, 400 and 500 MHz NMR / MALdi Mass Spectrometer / single crystal X-ray diffractometer / analytical facilities (UV, fluorescence, CD, HPLC, GC etc) were immediately set-up. This was greatly helpful for the initial research and resulted in quick publications within the first two years and enabled attracting good faculty. The Institute practices high ethical and safety standards in the laboratories. Several national and international chemistry conferences that were organized brought in excellent scientists (Jean-Marie Lehn, George Whitesides, C.N.R. Rao, to name a few) and visitors, providing immediate motivation, scientific benefit and exposure to faculty and students. It was also gratifying to see that working under these conditions, some of the faculty received peer national recognition as well.
I have great pleasure in presenting the book “Chemistry @ IISER Pune 2006-2014” which chronicles the activities of the Chemistry Program at IISER Pune since the inception of the Institute in 2006. The chemistry teaching which started with general chemistry in semester of August 2006 in a modest way at the level of 1st year BS, has now expanded with a range of courses encompassing not only the basic four pillars – inorganic, organic, theoretical and physical – but also into the interdisciplinary areas of chemical biology, material science, polymer chemistry, spectroscopy and nanoscience. The teaching of various courses is integrated with the development of practical skills in laboratory, which is so essential in chemistry and fused to a complete one-year research programme in 5th year. It is gratifying to see that several research publications are emanating from UG research. Students have the option of taking up a UG research project not only at IISER Pune but also at other research Institutes in India, some abroad, and in industry as well. The aim of chemistry@iiserpune is to train students UG students in the breadth, depth and impart research experience before they graduate. In 2014, the BS-MS chemistry programme of the Institute was accredited by the Royal Society of Chemistry, UK – the first Institute in India to receive such recognition and this signifies the international equivalence of our BS-MS course.

The Institute started enrolling students in year 2007-2008 right from the day the first faculty member joined. At present, there are 163 PhD students in Chemistry (more than 40% of the total IISER Pune PhD students) and 11 have already received their PhD degrees till December 2014. Recently Institute post-doctoral programme in chemistry was introduced and 5 fellows have joined the programme.

In 2008, a small research laboratory to accommodate 20-25 students was established in the transit campus in Sai Trinity building, where more than 10 faculty members shared laboratory with active research under limited and trying conditions, without any sense of temporariness sinking. Even in the transit lab, high end instrumentation such as jet spectrometer coupled with TOF, High performance computer, 400 and 500 MHz NMR / MALDi Mass Spectrometer / single crystal X-ray diffractometer / analytical facilities (UV, fluorescence, CD, HPLC, GC etc) were immediately set-up. This was greatly helpful for the initial research and resulted in quick publications within the first two years and enabled attracting good faculty. The Institute practices high ethical and safety standards in the laboratories. Several national and international chemistry conferences that were organized brought in excellent scientists (Jean-Marie Lehn, George Whitesides, C.N.R. Rao, to name a few) and visitors, providing immediate motivation, scientific benefit and exposure to faculty and students. It was also gratifying to see that working under these conditions, some of the faculty received peer national recognition as well.
In 2011, the chemistry laboratory was the first one to move into the main campus into the Mendeleev block that housed 20 faculty offices and 4 large laboratories accommodating 120 PhD students and a dedicated instrument laboratory and modern chemical and solvent storage facilities. All visitors immediately noticed the design of labs incorporating all safety features. This greatly accelerated the output of the research programme in terms of quality of publication. The number of faculty members increased and the facilities allowed in-house fabrication of terahertz, femtosecond fluorescence and laser Raman spectrometers along with establishing biology labs to carry out immediate activity testing. For the last 3 years, Mendeleev provided the major buzz of chemistry research and the performance culminated in the recognition award of DST-FIST level II fund to acquire a 600 MHz NMR spectrometer, AFM and microfocus X-ray diffractometer.

Finally, October-2014 saw the shifting of major chemistry laboratories to the main building which now houses fully equipped wet and instrument labs, custom designed by each faculty member to their research needs. The Mendeleev block continues to provide extra lab space for all UG teaching laboratories and some research facilities. It is a matter of great satisfaction to the faculty members and students that they are now in their own independent laboratories and look forward to accelerated research work.

I should place on record the patience of all chemistry faculty members for bearing the inconveniences of temporary lab and office arrangements and repeated relocation of labs. None of these have dampened their spirit and they have without excuses continued to perform well. They are all acutely aware of the future science challenges ahead: how to advance and sustain the IISER Pune chemistry programme (teaching and research) amongst the best in the world. We know that we have miles to go before we realize this dream.

This brochure has been prepared as the performance report of the chemistry programme for the duration 2006-2014 for submission to the review committee and to record all the achievements so far.

As we enter 2015, I wish all the faculty and students well in their new laboratories.

Krishna N. Ganesh
Director and Discipline Co-ordinator, Chemistry (2006 – present)

January 7, 2015
In 2011, the chemistry laboratory was the first one to move into the main campus into the Mendeleev block that housed 20 faculty offices and 4 large laboratories accommodating 120 PhD students and a dedicated instrument laboratory and modern chemical and solvent storage facilities. All visitors immediately noticed the design of labs incorporating all safety features. This greatly accelerated the output of the research programme in terms of quality of publication. The number of faculty members increased and the facilities allowed in-house fabrication of terahertz, femtosecond fluorescence and laser Raman spectrometers along with establishing biology labs to carry out immediate activity testing. For the last 3 years, Mendeleev provided the major buzz of chemistry research and the performance culminated in the recognition award of DST-FIST level II fund to acquire a 600 MHz NMR spectrometer, AFM and microfocus X-ray diffractometer.

Finally, October-2014 saw the shifting of major chemistry laboratories to the main building which now houses fully equipped wet and instrument labs, custom designed by each faculty member to their research needs. The Mendeleev block continues to provide extra lab space for all UG teaching laboratories and some research facilities. It is a matter of great satisfaction to the faculty members and students that they are now in their own independent laboratories and look forward to accelerated research work.

I should place on record the patience of all chemistry faculty members for bearing the inconveniences of temporary lab and office arrangements and repeated relocation of labs. None of these have dampened their spirit and they have without excuses continued to perform well. They are all acutely aware of the future science challenges ahead: how to advance and sustain the IISER Pune chemistry programme (teaching and research) amongst the best in the world. We know that we have miles to go before we realize this dream.

This brochure has been prepared as the performance report of the chemistry programme for the duration 2006-2014 for submission to the review committee and to record all the achievements so far.

As we enter 2015, I wish all the faculty and students well in their new laboratories.

Director and Discipline Co-ordinator, Chemistry (2006 – present)

January 7, 2015

Krishna N. Ganesh
Prof. Prashant Kamath
John A. Zahm Professor of Science
Department of Chem & Biochem and Radiation Laboratory
University of Notre Dame
Notre Dame, IN 46556, USA
E-Mail: pkamat@nd.edu
Website: http://www3.nd.edu/~kamatlab/

Prof. Dr. Peter Seeberger
Director
Max Planck Institute of Colloids and Interfaces
Am Mühlenberg 1
14476 Potsdam, Germany
E-Mail: peter.seeberger@mpikg.mpg.de
Website: http://www.mpikg.mpg.de/en/bs

Prof. D.D. Sarma
Professor and Chairman
Solid State and Structural Unit
Indian Institute of Science
Bangalore 560012
E-Mail: sarma@sscu.iisc.ernet.in
Website: http://sscu.iisc.ernet.in/DDSarma/

Prof. N. Periasamy
Senior Professor (Retd), TIFR
303 Golf Manor
NAL Wind Tunnel Road
Murugeshpalya
Bangalore-560017
Email: peri46@gmail.com
Website: http://www.tifr.res.in/~peri/

Prof. R. Murugavel
Head, Department of Chemistry
Indian Institute of Technology Bombay
Powai, Mumbai 400076
Email: rmv@chem.iitb.ac.in; muruks@iitb.ac.in
Website: http://www.chem.iitb.ac.in/~rmv/
Contents

Foreword, Prof. K.N.Ganesh, Chair, Chemistry

Faculty Profile 1

Staff Profile 71

Undergraduate & Ph.D. Programme 73

Research and Development 107

List of Publications 154

External Research Grant 176

Conferences, Symposia and Events 181

Visitors 188

Departmental Statistics 189

Instrumentation Facilities 190

Safety in Chemistry@IISER Pune 202
isolation and characterization of an air-stable neutral 25π penta-thiophene macrocycle. It undergoes one-antiaromatic nature in solution and solid states. In continuation with this study, we were successful in the electrons exhibited reversible two-electrons larger antiaromatic expanded isophlorins with 32π characterized in solution and solid state. Much states of this rare organic redox states were anion and 24π antiaromatic cation. All the three π electron redox reactions to form 26π aromatic π oxidations to 30π macrocycles bearing 40π and 48π π electrons were also found to be planar and antiaromatic in nature. But their redox properties were found to be different compared to the smaller macrocycles. Our observations reveal significant difference in the redox properties of antiaromatic macrocycles compared to aromatic macrocycles.

V. G. ANAND
Associate Professor
Ph.D.: Indian Institute of Technology, Kanpur, India
Post-doc.: JSPS Fellow, Kyoto University, Kyoto, Japan
Previous position: Scientist-C, NIIST (CSIR), Thiruvananthapuram
Assistant Professor: June 2007 – January 2013, IISER-Pune
Associate Professor: January 2013 – Present date, IISER-Pune
Email: vg.anand@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~vg.anand/

Antiaromaticity

The main research focus of this laboratory is in the design, synthesis and exploration of electronic properties of 4nπ macrocycles derived from small heterocycles such as thiophene, furan, and selenophene. Huckel’s rule suggests a reversible two-electron redox reaction between aromatic and antiaromatic states for planar π-conjugated macrocycle. However, such observations are very rare and limited to smaller hydrocarbon rings. In pursuit of stable 4nπ systems, we have synthesized a range of 4nπ-expanded isophlorins bearing 20π to 48π electrons. The structure of isophlorin was hypothesized as a possible unstable intermediate in the synthesis of porphyrin. We were successful in the synthesis of the first stable 20π isophlorins derived from furan and thiophene heterocycles. Spectroscopic characterization and structural elucidation confirmed its antiaromatic nature in solution and solid states. In continuation with this study, we were successful in the isolation and characterization of an air-stable neutral 25π penta-thiophene macrocycle. It undergoes one-electron redox reactions to form 26π aromatic anion and 24π antiaromatic cation. All the three states of this rare organic redox states were characterized in solution and solid state. Much larger antiaromatic expanded isophlorins with 32π electrons exhibited reversible two-electrons oxidation to 30π aromatic dication. The larger macrocycles bearing 40π and 48π electrons were also found to be planar and antiaromatic in nature. But their redox properties were found to be different compared to the smaller macrocycles. Our observations reveal significant difference in the redox properties of antiaromatic macrocycles compared to aromatic macrocycles.
isolation and characterization of an air-stable neutral \(\pi \) penta-thiophene macrocycle. It undergoes one-antiaromatic nature in solution and solid states. In continuation with this study, we were successful in the electrons exhibited reversible two-electrons \(\pi \) larger antiaromatic expanded isophlorins with \(32 \) characterized in solution and solid state. Much states of this rare organic redox states were antiaromatic cation. All the three \(\pi \) anion and \(24 \) electron redox reactions to form \(26 \) aromatic \(\pi \) macrocycles.

significant difference in the redox properties of antiaromatic macrocycles compared to aromatic properties of \(4n \) \(\pi \) hydrocarbon rings. In pursuit of stable \(4n \) systems, we observations are very rare and limited to smaller planar reaction between aromatic and antiaromatic states for Huckel’s rule suggests a reversible two-electron redox.
Surface Science and Materials Chemistry

The main research focus of this laboratory is on Surface Science. Until successful establishment of the planned Surface Science Laboratory at IISER Pune, we are investigating metal, alloy and oxide nanoparticles; metal-organic coordination polymer gels and hybrids; self-assembled nanostructures of conducting polymers and hybrids; and graphene-based materials. We are interested in exploring the broad research area of Materials Chemistry in general.

Redox-active metal-organic gels (MOGs) are evolving as a new class of stimuli responsive materials. MOG comprised of Fe³⁺ ions and benzene tricarboxylic acid (BTC) ligand is prepared and characterized. In situ incorporation (without the use of any extraneous oxidant) of conducting polypyrrole and polythiophene moieties into the xerogel matrix was achieved and thereby resulted in the formation of hybrid conductive composite materials. Furthermore, in the presence of small reactive organic molecules like pyrrole, aniline, and bithiophene, the gelation process was unaffected and at the same time it led to the formation of highly photoluminescent hybrid materials (Figure 1 and Figure 2).

Toxic Pb²⁺ ions from aqueous solution could be efficiently removed at ambient conditions with the help of polyaniline (PANI). A significant morphological transformation of PANI from nano-fibers to nano-cuboids suggested a spontaneous and hierarchical self-assembly with Pb²⁺ ions (Figure 3).

Self-assembly of Au nanoparticles in presence of aliphatic dithiol and aromatic dithiol of similar molecular length was found to be remarkably different. Aromatic dithiol lead to the predominant formation of dimers/trimers while aliphatic dithiol induced larger aggregates (Figure 4).
Publications

Total number of publications: 80; Independent publications: 27

Selected Publications

External Grants

Teaching Contributions

Advanced Materials Science, Transition Metals Chemistry, Self-Assembly, Inorganic Chemistry, Chemistry Lab I and II (Physical and Inorganic Chemistry), Chemistry Lab II-Inorganic Chemistry, Advanced Inorganic Chemistry Laboratory, Advanced Physical Chemistry Laboratory

Awards and Recognitions

- Sir P. C. Ray Research Award 2003
- Gerhard Ertl Young Investigator Award 2011
- DAE-Young Scientist Research Award 2011
- ChemComm Emerging Investigator 2014
- Visiting Scientist, PSI, Switzerland, 2011- till date

Research Group

Doctoral students: Barun Dhara, Ranguwar Rajendra, Plawan Jha, Shammi Rana
Under-graduate students: Anita Justin
Women scientist: Dr. Sweta Naik
Past under-graduate students: Vimlesh K. Bind, Hetal Vaishnav, Shraddha Jadhav, Shrikant Shende
The main research focus of this laboratory is to merge synthetic organic chemistry, chemical biology and nanotechnology based tools and techniques to target multiple organelles and signaling pathways in cancer.

Nanotechnology Tools: We have developed biocompatible and biodegradable nanoparticles based on lithocholic acid and vitamin D3 to deliver cytotoxic drugs as well as kinase inhibitors into the cancer cells. We used vitamin D3 nanoparticles to deliver dual drug combination to overcome drug resistance in hepatocellular carcinoma. We engineered nanoparticles from dual drug conjugate to target mitochondria and nucleus simultaneously into cancer cells which could lead to improved efficacy in next generation cancer therapeutics.

Chemical Biology Tools: Wnt signaling has emerged as one of the interesting targets in cancer therapeutics, regenerative medicine, embryonic development and stem cell biology. We are interested to develop novel small molecule library to modulate Wnt signaling in cancer and developmental processes. In recent years proteasome has also emerged as another interesting target for cancer therapeutics considering its role in protein degradation, endoplasmic reticulum stress response and controlling cellular protein homeostasis. We are currently developing small molecule proteasome inhibitors as novel cancer therapeutic agents by using chemical biology tool box.
The main research focus of this laboratory is to merge synthetic organic chemistry, chemical biology and nanotechnology based tools and techniques to target multiple organelles and signaling pathways in cancer. We have developed biocompatible and biodegradable nanoparticles based on lithocholic acid and vitamin D3 to deliver cytotoxic drugs as well as kinase inhibitors into the cancer cells. We used vitamin D3 nanoparticles to deliver dual drug combination to overcome drug resistance in hepatocellular carcinoma. We engineered nanoparticles from dual drug conjugate to target mitochondria and nucleus simultaneously into cancer cells which could lead to improved efficacy in next generation cancer therapeutics.

Wnt signaling has emerged as one of the interesting targets in cancer therapeutics, regenerative medicine, embryonic development and stem cell biology. We are interested to develop novel small molecule library to modulate Wnt signaling in cancer and developmental processes. In recent years proteasome has also emerged as another interesting target for cancer therapeutics considering its role in protein degradation, endoplasmic reticulum stress response and controlling cellular protein homeostasis. We are currently developing small molecule proteasome inhibitors as novel cancer therapeutic agents by using chemical biology tool box.

Publications

Total number of publications: 19; Independent publications: 3

Selected Publications

External Grants

- Chimeric Nanoparticle: A Novel Nanoplatform for Signaling Pathway Driven Cancer Chemotherapy. Funding Agency: Ramalingaswami Fellowship, DBT, India (Feb 2012-Jan 2017).

Teaching Contributions

Organic Synthesis II, Bioorganic Chemistry

Awards and Recognitions

- Ramalingaswami Fellowship (DBT, India)
- Charles A. King Trust Post-doctoral Research Fellowship Award (USA)

Research Group

Doctoral and project students: Abhik Mallick, Sandeep Palvai, Chandramouli Ghosh, Sohan Patil, Aditi Dixit, Piyush More, Nikunj Mapara.

Under-graduate students: Syed Muhammed Muazzam Kamil.

Past under-graduate students: Suhas Gawali, Sumersing Patil, Deepali Kothurkar, GKRS Naresh
The main research focus of our laboratory is in the field of organic synthesis with a focus on green asymmetric catalytic synthesis and C-H/C-X bond functionalization. Emphasis is on the development of new synthetic methods that facilitate the construction of complex and bioactive molecules. Some of the strategies developed will be employed for the enantioselective synthesis of bioactive natural products and also for the synthesis inhibitors of PI-3 and aurora kinases.

We developed a novel, practical and convenient catalytic protocol comprising of FeCl₃·6H₂O-CH₃NO₂-H₂O for the rapid synthesis of α, β-unsaturated carboxylic acids and esters with high E-stereoselectivity both under microwave and conventional heating conditions. This powerful approach efficiently demonstrated the utility of biomass derived aldehydes to make fuel additives. One pot route to cinnamate esters has been explored by the synthesis of commercial sunscreen agents. This protocol has been proved to be a general method for the gram scale synthesis.

We have developed an efficient and useful approach for constructing cis-2-aryl 3-amino piperidines with an option of introducing diverse aryl groups at C-2 position. This also gives an easy access to condense different aldehydes at C-3 amine functionality without compromising the stereochemistry. Application of this method has been exemplified in the enantioselective synthesis of (+)-CP-99,99, NK1-receptor antagonist. Currently we are focusing our efforts on asymmetric intermolecular C-H functionalization using nontoxic metal catalysts at ambient conditions and asymmetic catalysis.

Organic Synthesis, Catalysis and Medicinal Chemistry

The main research focus of our laboratory is in the field of organic synthesis with a focus on green asymmetric catalytic synthesis and C-H/C-X bond functionalization. Emphasis is on the development of new synthetic methods that facilitate the construction of complex and bioactive molecules. Some of the strategies developed will be employed for the enantioselective synthesis of bioactive natural products and also for the synthesis inhibitors of PI-3 and aurora kinases.

An easy access to α, β-unsaturated carboxylic acids and esters and cis-2, 3-disubstituted piperidines:

We developed a novel, practical and convenient catalytic protocol comprising of FeCl₃·6H₂O-CH₃NO₂-H₂O for the rapid synthesis of α, β-unsaturated carboxylic acids and esters with high E-stereoselectivity both under microwave and conventional heating conditions. This powerful approach efficiently demonstrated the utility of biomass derived aldehydes to make fuel additives. One pot route to cinnamate esters has been explored by the synthesis of commercial sunscreen agents. This protocol has been proved to be a general method for the gram scale synthesis.
We have developed an efficient and useful approach for constructing cis-2-aryl 3-amino piperidines with an option of introducing diverse aryl groups at C-2 position. This also gives an easy access to condense different aldehydes at C-3 amine functionality without compromising the stereochemistry. Application of this method has been exemplified in the enantioselective synthesis of (+)-CP-99,99, NK1-receptor antagonist. Currently we are focusing our efforts on asymmetric intermolecular C-H functionalization using nontoxic metal catalysts at ambient conditions and asymmetric catalysis.

Publications

Total number of publications: 18; Independent publications: 8, Patent: 1 applied

Selected Publications

Teaching Contributions

Research Group

Doctoral and project students: L. V. S. Rajesh Babu, Balu S. Navale, Tushar M. Khopade, Trimbak B. Mete, Rameshwar Shinde
Under-graduate students: Abhishek Soni
Past doctoral students: Dr. Amar R. Mohite Dr. Prakash R. Sultane
Past under-graduate students: Digvijay Porwal, Shishir Chourey
The main research focus of the group is on developing novel molecular systems derived from the elements of group 13, 14 and 15 and their applications in materials chemistry and catalysis. Significant strides have been made by employing organosilicon and amino-P(V) scaffolds containing central as well as peripheral metal binding groups.

Facile routes to access P(V)-imido anions in polar and in protic solvents have been developed by employing the salts certain reactive soft metal ions, such as Ag(I), Cu(I) and Pd(II) ions. Novel examples of tri- and hexanuclear Pd(II) complexes stabilized by the highly basic tris(imido)-phosphate trianions were reported for the first time. Further, these complexes were used as supramolecular synthons for obtaining elusive neutral polyhedral cages for Pd(II) ions and their host-guest behaviour was studied extensively (Figure 1). Apart from these, several peripherally functionalized imido and amido-P(V) ligands have been explored for their functional properties viz. selective gas and solvent uptake studies, guest-induced physical properties etc.

Organic and metal-organic ferroelectric materials have been prepared from main group moieties containing appropriate symmetry. Noticeably, tunable ferroelectric behaviour with high saturation polarization values and high dielectric constant values have been achieved for various examples of anion driven Cu$^+$L$_2$ frameworks (Figure 2).
Photo-functional cluster MOFs of unusual copper(I) iodide clusters have been synthesized using tripodal phosphoramido or organosilane platforms. These cluster MOFs were shown to exhibit stimuli-responsive luminescence behaviour such as thermochromism and mechanochromism.

Publications

Total number of publications: 42; Independent publications: 15

Selected Publications

External Grants

- Peripherally functionalized siloxane scaffolds for the assembly of multi-metallic cages, cluster and supramolecules. Funding Agency: SERB-DST, India (May 2013-April 2016).

Teaching Contributions

Introductory Inorganic Chemistry, Chemistry Lab II-Inorganic Chemistry, Main Group Chemistry, Advanced Inorganic Chemistry, Advanced Inorganic Laboratory

Research Group

Doctoral and project students: Anant Kumar Srivastava, Mahesh Deshmukh, Ashok Yadav, P. Rajasekar, T. Vijaikanth, Sheik Sadam Husein

Under-graduate students: Sourabh

Past doctoral students: Dr. Arvind Gupta

Past under-graduate students: Arun Dixith Reddy, Indra Mahawar
Natural Products Synthesis and Homogeneous Catalysis

The main research focus of the laboratory is to develop efficient and novel sustainable route to synthesize natural products of challenging structures with intriguing biological activities. Towards this, new catalytic reactions for stereoselective domino reactions, phenolic oxidation and dehydrogenate coupling reactions will be attempted using cooperative metal catalysts that eventually lead to stereoselective C-C, C-N and C-O bonds formation. Various key building blocks can be synthesized by avoiding hazardous stoichiometry reagents and activators utilizing these protocols.

Asymmetric synthesis: Our research focus is to develop sustainable and efficient methods for the synthesis of chiral amines and related analogues which are widely used in chemical industry via enantioselective amination using alcohols, alkenes or alkynes and chiral cooperative metal catalyst.

Flow mediated organic transformations: Considering the potential application of flow chemistry in the pharmaceutical industry and fine chemicals synthesis, basic research is desirable in implementing the batch processes into flow chemistry for challenging organic transformations. We are interested in developing a new process for the conversion of easily available alcohols or esters into respective dehydrogenated products using metal catalyst under continuous flow techniques.

Fluorination methods: Our research aim is to study the catalytic fluorination of various activated/un-activated aromatic and non-aromatic compounds using cooperative metal complex catalyst, non-hazardous and inexpensive fluorinating agents.

Publications

Total number of publications: 18; Patents: 2

Selected Publications

The main research focus of the laboratory is to develop efficient and novel sustainable route to synthesize natural products of challenging structures with intriguing biological activities. Towards this, new catalytic reactions for stereoselective domino reactions, phenolic oxidation and dehydrogenate coupling reactions will be attempted using cooperative metal catalysts that eventually lead to stereoselective C-C, C-N and C-O bonds formation. Various key building blocks can be synthesized by avoiding hazardous stoichiometry reagents and activators utilizing these protocols.

Our research focus is to develop sustainable and efficient methods for the synthesis of chiral amines and related analogues which are widely used in chemical industry via enantioselective amination using alcohols, alkenes or alkynes and chiral cooperative metal catalyst.

Considering the potential application of flow chemistry in the pharmaceutical industry and fine chemicals synthesis, basic research is desirable in implementing the batch processes into flow chemistry for challenging organic transformations. We are interested in developing a new process for the conversion of easily available alcohols or esters into respective dehydrogenated products using metal catalyst under continuous flow techniques.

Our research aim is to study the catalytic fluorination of various activated/un-activated aromatic and non-aromatic compounds using cooperative metal complex catalyst, non-hazardous and inexpensive fluorinating agents.

Total number of publications: 18; Patents: 2

Selected Publications

External Grants

Studies on Metal Catalyzed Stereoselective C-C, C-N and C-O Bond Formation via Borrowing Hydrogen Methods Using Continuous Flow Techniques. Funding Agency: SERB-DST, India. (Submitted)

Teaching Contributions

Organic Photochemistry, Chemistry Laboratory III

Awards and Recognitions

- Alexander Von Humboldt Fellow (2012)

Research Group
Project student: Moreshwar B Chaudhari
Organic Chemistry and Chemical Biology

The main research focus of our lab is the development of small organic molecules for controlled generation and release of short-lived biological species such as reactive nitrogen, oxygen and sulfur species. In order to achieve controlled release, we design and develop small molecule based probes. These small molecules can be used as tools for studying the chemistry and biology of such reactive species and might also allow us to explore the potential for therapeutic applications as well.

Reactive oxygen species (ROS) are produced inadvertently in nearly all organisms. Superoxide \(\text{O}_2^- \), which is produced by 1-electron transfer to oxygen during respiration and is subsequently converted to hydrogen peroxide \(\text{H}_2\text{O}_2 \), which through the Fenton reaction generates the highly reactive \(\text{OH} \). Together, these ROS can damage vital cellular components and are hence deployed by the immune system to counter infectious pathogens. Several recent studies have shown that ROS can sensitize infectious bacteria to clinical antibiotics suggesting the possible therapeutic utility for ROS. Our goal is to design and develop small molecule generators of ROS in order to better understand cellular responses to elevated ROS.

Reactive sulfur species are produced as intermediates during sulfur metabolism. Hydrogen sulfide (\(\text{H}_2\text{S} \)) is generated but precise mechanisms of its actions are not known. During oxidative conditions, \(\text{H}_2\text{S} \) is converted to sulfur dioxide (\(\text{SO}_2 \)), which primarily exists as its hydrated form, sulfite. This reactive sulfur species is used in wine making as an antibacterial and the food industry as a preservative and antioxidant. We have developed several small molecules that can produce reactive sulfur species in a controlled manner and demonstrated their antibacterial properties.

Nitric oxide (NO) is a versatile biomolecule that mediates numerous physiological processes. The therapeutic potential of NO has been recognized but few promising methodologies for the use of NO as are available. This is attributable primarily to the toxicity associated with elevated levels of NO. For example, numerous studies demonstrate the efficacy of NO as a potent tumoristatic agent. However, due to its
multifarious biological effects, controlled and localized generation of therapeutic NO using prodrugs is necessary. Other studies have shown antimicrobial effects of NO especially against drug resistant bacteria. We developed several small molecule strategies for localizing and monitoring nitric oxide within cells.

Publications

Total number of publications: 42; Independent publications: 15

Selected Publications

External Grants

- Hypoxia-Activated Prodrugs of Nitric Oxide. Funding Agency: DBT, India (Mar 2012-Mar 2015).
- Redox-Directed Mycobacterial Therapeutics. Funding Agency: DBT, India (Nov 2012-Sep 2015).

Teaching Contributions

Awards and Recognitions

- Innovative Young Biotechnologist Award, 2011
- Early Career Scientist, 2012; Royal Society of Chemistry-West India

Research Group

Doctoral and project students: Satish Malwal, A. Dharmaraja, Kavita Sharma, Vinayak Khodade, Kundansingh Pardeshi, G. Ravikumar, Amogh Kulkarni, Preeti Chauhan, Ajaykumar Sharma, R. K. Sankar, and Viraj Gala

Under-graduate students: M. Sharathchandra

Past under-graduate students: Rohan Kumbhare
The main research focus of my group is on developing analytical models based on the principles of time dependent statistical mechanics and applying them to investigate problems in chemical physics, biological physics and soft condensed matter. Our analytical findings are properly complemented with simulations and available experimental results.

Modeling the effect of transcriptional noise on switching in gene networks in a genetic bistable switch: A new theoretical method has been proposed to study the dynamics of switching in a two state gene expression model by explicitly accounting for the transcriptional noise. This theoretical technique along with Monte Carlo simulations has been used to study how switching times starting from either active/inactive promoter state are affected by different biological parameters such as transcription rate and so on.

Modeling the effect of allosteric inhibition in single molecule enzyme kinetics: In this project we are studying the turnover statistics of a single enzyme in the presence of inhibitors for different types of enzyme inhibitor reactions. We have developed a theoretical formalism to calculate the effect of temporal fluctuations in the reaction rate in the presence of inhibitors as observed at the single molecule level. Our theory has been used to study enzymatic inhibition kinetics in a single molecule experiment where individual enzyme molecules inhibited by the product.

Publications

Total number of publications: 16; Independent publications: 1

Selected Publications

The main research focus
Modeling the effect of transcriptional noise on switching in gene networks in a genetic bistable switch:

Modeling the effect of allosteric inhibition in single molecule enzyme kinetics:

Publications
of my group is on developing analytical models based on the principles of time dependent statistical mechanics and applying them to investigate problems in chemical physics, biological physics and soft condensed matter. Our analytical findings are properly complemented with simulations and available experimental results.

A new theoretical method has been proposed to study the dynamics of switching in a two state gene expression model by explicitly accounting for the transcriptional noise. This theoretical technique along with Monte Carlo simulations has been used to study how switching times starting from either active/inactive promoter state are affected by different biological parameters such as transcription rate and so on.

In this project we are studying the turnover statistics of a single enzyme in the presence of inhibitors for different types of enzyme inhibitor reactions. We have developed a theoretical formalism to calculate the effect of temporal fluctuations in the reaction rate in the presence of inhibitors as observed at the single molecule level. Our theory has been used to study enzymatic inhibition kinetics in a single molecule experiment where individual enzyme molecules inhibited by the product.

Total number of publications: 16; Independent publications: 1

Selected Publications

External Grants

Modelling heterogeneity in nanoparticle catalysis at the single molecule level, Start-Up Research Grant (Young Scientists) Funding Agency: SERB-DST, India (approved).

Teaching Contributions

Symmetry and Group Theory, Statistical Thermodynamics

Research Group

Doctoral and project students: Bappa Ghosh
Past project students: Anusheela Das
Expanding current structural understandings of miRNA biogenesis pathway

Publications

Total number of publications: 24; Independent publications: 1

Selected Publications

External Grants

Teaching Contributions

The main research focus of my laboratory is on theoretical design and experimental implementation of new NMR experiments to probe the biophysical characteristics of RNA and proteins; understanding functional aspects of non-coding RNAs; and structural biology of microRNAs and their regulation in various disease settings.

Developing sequence codes for ms-μs dynamics in RNA With the current plethora of structure prediction algorithms, it is possible to predict sub-optimal secondary structures for a given RNA sequence. However, the number of these sub-optimal secondary structures, as predicted by various structure prediction algorithms available, increases exponentially both with increase in the number of nucleotides in the RNA sequence and with increase in the energy range. Although, for small RNAs and for small energy range these algorithms do pretty well, but still there is a need to validate these 'feasible' structures experimentally. Experimental characterization of alternative structures for small RNAs using state-of-the-art R_μ NMR relaxation dispersion experiments has been done successfully but is a time consuming and expensive affair. Thus there is a dire need to formulate sequence codes that would predispose the sequence towards such motions and allow predicting precise sub-optimal secondary structures without the need of experiments.

NMR Spectroscopy of Biomolecules

JEETENDER CHUGH
Assistant Professor
Ph.D.: Tata Institute of Fundamental Research, Mumbai, India
Post-doc.: University of Michigan, Ann Arbor, USA
Joining at IISER: March 2014
Email: cjeet@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~cjeet/
Expanding current structural understandings of miRNA biogenesis pathway All miRNAs do not follow a universal pathway for their biogenesis. Specific mechanisms in the biogenesis of individual class of miRNAs suggest multiple opportunities for tight regulation of miRNA levels. This spectrum of distinct mechanisms is widening everyday as more and more interacting partners are being identified. Although several reports emphasize on the regulatory activities of miRNAs, very little is known about the structural (primary, secondary or tertiary) understanding of the regulation of miRNA expression levels and their activity. Therefore, understanding the conformational roles fundamental for these regulatory mechanisms in the miRNA biogenesis pathway may act as a path-breaking step for development of new drugs based on RNAi mechanism.

Publications

Total number of publications: 24; Independent publications: 1

Selected Publications

- **Chugh, J.** Determining Transient Nucleic Acid Structures by NMR. *Chemical Biology of Nucleic Acids; RNA Technologies*. Springer 2014, 181-198. (Book Chapter)

External Grants

- Applied to DST and Wellcome-DBT Intermediate Fellowship.

Teaching Contributions

Chemistry Laboratory-I Physical Chemistry, Advanced Physical Chemistry Laboratory, Structural Methods and Analysis, Guest Lecturer at University of Pune (Biotechnology Department and Bioinformatics Department)

Research Group

Doctoral students: Himani Rawat, Harshad Paithankar
Gas Phase Laser Spectroscopy, Non-covalent Interactions

The main research focus of the group is on molecular level understanding of weak non-covalent interactions responsible for the stabilization of specific structures of biomolecules (proteins, DNA etc.) and materials by using home-built jet-cooled REMPI (Resonantly Enhanced Multiphoton Ionization) Laser-desorption Time of Flight Mass spectrometer.

Competition between electrostatic and dispersion interactions in N-heterocyclic aromatic complexes has been studied in a supersonic jet using R2PI (Resonant two photon ionization), IR-UV and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. Indole has been chosen as central molecular system of study and the complexing partners are pyridine, furan, thiophene, pyrrole, imidazole, and hexafluorobenzene. It has been found that the interactions present in the observed V-shaped, cyclic triangular, tilted T-shaped, and π-stacked complexes resemble with those in biomolecules and materials.

Gas phase spectroscopic evidence of $n \rightarrow \pi^*$ interaction has been explored by studying complexes of 7-azaindole and 2, 6-fluorosubstituted pyridines. The $n \rightarrow \pi^*$ interaction has been probed by measuring the strength of the hydrogen bonding interaction. Direct spectroscopic evidence of the $n \rightarrow \pi^*$ interaction is underway.
Sequence dependent folding motifs of isolated as well as microhydrated peptides are investigated in the gas phase by studying mass selected electronic and vibrational spectroscopy of end-protected tripeptides of different sequences.

Publications

Total number of publications: 31; **Independent publications:** 10

Selected Publications

External Grants

Teaching Contributions

Introductory Physical Chemistry, Chemistry Lab I-Physical Chemistry, Spectroscopy practicals, Fundamentals of Spectroscopy, Advanced Molecular Spectroscopy

Research Group

Doctoral students: Santosh K. Singh, Neha Sharma, Kamal Kumar Mishra

Under-graduate students: Ajay Kumar

Past doctoral students: Dr. Sumit Kumar
The main research focus of this laboratory is on developing novel Peptide Nucleic acid analogues to enable facile entry into cells and be functional in suppressing the targeted gene expression. These involve inherently cationic PNAs and fluorinated PNAs. We are interested in examining the mechanism of their cell entry, targeting to specific cells and ability to inhibit the expression of target gene. We have specifically demonstrated that the cationic PNAs enter the cells and accumulate around the nuclear membrane region. By conjugation with trimers of N-galactosylamine, these are being now targeted into hepatocyte cells.

Another area of our interest is on studying the cationic 4(R/S)-substituted collagen mimetic peptides. These form interesting PPII helices, beta structures and show pH and solvent mediated conformational variations. They are also interesting cell penetrating peptides and exhibit unusual self-assembling properties. We are also studying interesting nanostructures of rods and wires formed by assembly of 4(R/S-amino)polyproline peptides and fluoro peptide nucleic acids.

Biomolecular Chemistry of Peptides and Nucleic Acids

Publications

Total number of publications: 160; From IISER Pune: 19

Selected Publications

The main research focus of our laboratory is on developing novel Peptide Nucleic acid analogues to enable facile entry into cells and be functional in suppressing the targeted gene expression. These involve inherently cationic PNAs and fluorinated PNAs. We are interested in examining the mechanism of their cell entry, targeting to specific cells and ability to inhibit the expression of target gene. We have specifically demonstrated that the cationic PNAs enter the cells and accumulate around the nuclear membrane region. By conjugation with trimers of N-galactosylamine, these are being now targeted into hepatocyte cells.

Another area of our interest is on studying the cationic 4(R/S)-substituted collagen mimetic peptides. These form interesting PPII helices, beta structures and show pH and solvent mediated conformational variations. They are also interesting cell penetrating peptides and exhibit unusual self-assembling properties. We are also studying interesting nanostructures of rods and wires formed by assembly of 4(R/S-amino)polyproline peptides and fluoro peptide nucleic acids.

KRISHNA N. GANESH

Professor
Ph.D.: University of Delhi, India; Cambridge University, UK

Previous positions: Scientist, Centre for Cellular and Molecular Biology, Hyderabad (1981-1987); Scientist, National Chemical Laboratory, Pune (1987-2006); Professor and Founder Director, IISER Pune (2006 – present).

Joining at IISER: June 2006

Email: kn.ganesh@iiserpune.ac.in

URL: http://www.iiserpune.ac.in/~kn.ganesh/

Biomolecular Chemistry of Peptides and Nucleic Acids

Research Group

Doctoral and project students: Nitin Bansode, Vijay Kadam, Satheesh Elelipilli, Madan Gopal, Shahaji More, Prabhakar Pawar, Pramod Bhingardeve, Manoj Kumar Gupta, Pradnya Kulkarni (NCL)

Post-doctoral: Dr. Dhrubajyoti Dutta

Under-graduate students: Pramod Kumar

Past doctoral students: Dr. Deepak Jain, Dr Tanpreet Kaur (NCL); Dr Mahesh Sonar (NCL)

Selected Publications

Teaching Contributions

General Chemistry, Bio-organic Chemistry, Chemical Biology, Self-assembly

Awards and Recognitions

- Awards: SS Bhatnagar Award in Chemical Sciences (1998); TWAS Prize in Chemical Sciences (2006); SASTRA-CNR Rao Award (Chemical Sciences) (2014)
- President, Organic and Biomolecular Chemistry Division (Div III), IUPAC (2012-2013)
- Membership of Editorial Boards of Journal: International Advisory Board, Journal of Organic Chemistry (ACS, USA); Editorial Advisory Board, Chemistry: Asian Journal (Wiley, Germany); Beilstein Journal of Organic Chemistry (Beilstein Publishing, Germany); Artificial DNA: PNA, XNA (Taylor and Francis, USA); Nature Scientific Reports (NPG, London); Oligonucleotides
Research in our group involves exploring novel physics and chemistry at the nanoscale using theoretical tools. In particular we are interested in how properties (e.g. structural, electronic, vibrational, magnetic and chemical) change upon reducing size or lowering dimensionality (particularly in the nanoscale) and how these changes effect the phenomena associated with these low dimensional (e.g. nanowires, nanotubes, surfaces and clusters) materials. To address such issues we perform first principles calculations using quantum mechanical density functional theory (for ground state properties), density functional perturbation theory (for vibrational properties) and time dependent density functional theory (for excited state properties). We actively collaborate with experimental groups both at IISER Pune and outside.

Using the above methods, we try to achieve the following goals: (a) understand aspects of chemical bonding and microscopic couplings that are essential to the specific properties of materials, (b) obtain information about the atomistic structure and electronic states, which are often hard and sometimes inaccessible to experiments and (c) design new materials and/or modify existing materials to yield materials
with desired properties. We are primarily interested in materials with applications in heterogeneous catalysis, photocatalytic water splitting, thermoelectrics, etc. Further we are also involved in developing computational tools, which can be used to understand material properties.

Publications

Total number of publications: 18; **Independent publications:** 9

Selected Publications

Teaching Contributions

Scientific Computing, Solid State Chemistry, Molecular Modeling in Chemistry, Computational Physics, Mathematical Methods

Awards and Recognitions

- Associate, Abdus Salam ICTP, Trieste, Italy from 2012-2016

Research Group

Doctoral and project students: Debnath Talukdar, Indu Kaul, Nandha Kumar, Niharika Joshi, Subrahmanyam Sappati

Past under-graduate students: C. Gaurav
Coordination Chemistry, Functional Porous Materials

The principal research focus of our laboratory is on the development of functional porous materials based on coordination polymers suited for applications in chemical industries, energy & environmental issues. Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity renders the desired multidimensional networked structure known as Metal-Organic Frameworks (MOFs) or Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & separation, catalysis, ion recognition, chemical separation, ionic conductivity, sensing etc (Figure. a).

Carbon capture and storage (CCS) technology is seeking great attention in the recent years owing to the pressing issue of greenhouse gas emissions, especially CO$_2$. We have synthesized 3-dimensional metal-carboxylate porous MOFs with electron rich pore surface for selective CO$_2$ uptake over N$_2$, H$_2$, Ar, CH$_4$ gases. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO$_2$ capture over potentially competing gases (Figure. b).

Chemical separation has great importance in industrial applications. In our lab flexible Zn(II) and carboxylate based MOFs have been developed for the separation of industrially vital monomers like benzene, p-xylene and styrene from the congener product streams.

Fuel cells have potential to produce energy in higher efficiencies with no environmental pollution. Zn(II) and oxalate based MOFs with high proton conductivity and chemical stability have been synthesized in our lab, which has potential to be utilized as proton exchange membrane in fuel cells.

MOF as a chemical sensor has been employed for multiple applications like explosive detection, in vivo neurotransmitter sensing and ion recognition. Chemically stable Zr(IV) and carboxylate based porous fluorescent MOF with free Lewis basic functional groups (like amine, pyridyl) has been developed for aqueous phase highly selective nitro explosive detection. A bio-compatible Zr(IV) and carboxylate based MOF based turn-on probe for detection of gasotransmitter H$_2$S in live cells has also been established in our lab.
Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous

26

Porous Coordination Polymers (PCPs). These materials have invoked interest in the fields of gas storage & our lab, which has potential to be utilized as proton exchange membrane in fuel cells. The pressing issue of greenhouse gas emissions, especially CO₂, has great importance in industrial applications. In our lab, flexible Zn(II) and carboxylate porous MOFs have been developed for the separation of industrially vital monomers like benzene, toluene, and styrene from the congener product streams. We have also utilized the open metal sites and secondary functionalities (like amine, hydroxy) present in MOFs for achieving selective CO₂ capture over potentially competing gases (Figure. a).

Self-assembly of predesigned organic building units and metal ions/clusters by engaging coordination affinity based on coordination polymers suited for applications in chemical industries, energy & environmental issues.

MOF as a chemical sensor

Fuel cells

Chemical separation

Carbon capture and storage (CCS) technology

Materials

Coordination Chemistry, Functional Porous
The main research focus of this laboratory is on the synthesis and utilization of naturally occurring non-ribosomal amino acids along with the novel α-, β- and γ-amino acids towards the design of proteolytically stable Protein Secondary Structure Mimetics, Miniproteins, Peptidomimetics, Antibiotics and Biomaterials. Using hybrid peptide foldamers, we are exploring the possibilities to design functional protein epitope mimetics, which can be used as inhibitors for protein-protein interactions, protease inhibitors and synthetic vaccine candidates.

Mimicking Functional Epitopes of Proteins: Using hybrid peptide foldamers, we are exploring short hybrid lipopeptides as novel antibacterial and antifungal candidates and the mechanism of action of these hybrid peptides.

Peptide Antibiotics: Besides the protein epitope mimetics, we are exploring short hybrid lipopeptides as novel antibacterial and antifungal candidates and the mechanism of action of these hybrid peptides.

Biomaterials: Efforts have also been undertaken to create novel biomaterials such as nanotubes, vesicles, nanofibers, polyhedrons, organogels and hydrogels from the proteolytically stable γ- and α,γ-hybrid peptide foldamers and investigating the utility of these novel soft biomaterials as delivery vehicles, tissue culture and casting metal nanowires from metal ions.

Foldamers, Peptidomimetics, Antibiotics and Biomaterials

HOSAHUDYA N. GOPI
Associate Professor
Ph.D.: Bangalore University, Bangalore, India
Post-doc.: Molecular Biophysics Unit, Indian Institute of Science, India
Post-doc.: Northwestern University, Evanston, USA
Post-doc.: Drexel University of College of Medicine, Philadelphia, USA
Assistant Professor: July 2007 – January 2013, IISER-Pune
Associate Professor: January 2013 – Present date, IISER-Pune
E-mail: hn.gopi@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~hn.gopi/
The main research focus of this laboratory is on the synthesis and utilization of naturally occurring non-ribosomal amino acids along with the novel α-, β- and γ-amino acids towards the design of proteolytically stable Protein Secondary Structure Mimetics, Miniproteins, Peptidomimetics, Antibiotics and Biomaterials.

Using hybrid peptide foldamers, we are exploring the possibilities to design functional protein epitope mimetics, which can be used as inhibitors for protein-protein interactions, protease inhibitors and synthetic vaccine candidates.

Hybrid peptides
- Structural analogy with α-helix
- Hairpins and multistranded sheets

Besides the protein epitope mimetics, we are exploring short hybrid lipopeptides as novel antibacterial and antifungal candidates and the mechanism of action of these hybrid peptides.

Efforts have also been undertaken to create novel biomaterials such as nanotubes, vesicles, nanofibers, polyhedrons, organogels and hydrogels from the proteolytically stable g- and a,g-hybrid peptide foldamers and investigating the utility of these novel soft biomaterials as delivery vehicles, tissue culture and casting metal nanowires from metal ions.

Publications

Total number of publications: 56; Independent publications: 21

Selected Publications

External Grants

- Investigation of gamma and hybrid gamma helical peptides as HIV-1 fusion inhibitors: Funding Agency: DST, India (May 2010-April 2013).
- Exploration of naturally occurring β-hydroxy γ-amino acids (statines) in the design of foldamers and biological active peptidomimetics: Submitted to SERB-DST, India.
- Exploring the Antimicrobial Activities of short α-γ Hybrid Lipopeptides: Submitted to CSIR, India.

Teaching Contributions

Research Group

Doctoral students: Mothukuri Ganesh Kumar, Sushil N. Benke, Rajkumar Misra, Anindita Adak, Rahi M. Reja, K. Veeresh, Rupal D. Bhaisare

Former Ph. D Students: Dr. Anupam Bandyopadhayay, Dr. Sandip V. Jadhav, Dr. Sachitanand M. Mali

Past under-graduate students: Mr. Kumar Saurav, Ms. Neha Agrawal, Mr. Sumeet K. Singh, Ms. Ankita Malik and Mr. Rupal D. Bhaisare
The theme of our research is theoretical investigation of excited state molecular phenomena using quantum chemistry and nuclear dynamics methods. Excited state processes constitute a large class of phenomena in nature. Several of these phenomena like photoinduced electron transfer, photodissociation and fluorescence quenching occur at the ultrafast or femtosecond timescale and play important roles in living organisms and in atmospheric phenomena. The detailed mechanistic understanding of such processes is of basic scientific interest and is also important for its technological implications in solar-based renewable energy devices, particularly the conversion of solar energy to chemical energy.

The mechanism of photo-induced tautomerization of o-nitro toluene to its aci-nitro tautomer has been explored using *ab initio* electronic structure calculations. The reaction is found to proceed through a complex pathway, involving both singlet and triplet states. Methods for finding interesting topologies like a three-state conical intersections have been developed (Figure a).

The independent-electron surface hopping method has been implemented to study nonadiabatic phenomena during molecule-surface interactions. It is being applied to explain energy transfer to intramolecular degrees of freedom during scattering of molecules from surfaces (Figure b).

The mechanism of fluorescence quenching in certain conformers of the weakly bound fluorophenylacetylene-methylamine complex in the gas phase is being investigated using electronic structure calculations (Figure c).
Publications

Total number of publications: 15; Independent publications: 3

Selected Publications

External Grants

Teaching Contributions

Symmetry and Group Theory, Quantum Chemistry

Research Group

Doctoral students: Avdhoot Datar, Mahesh Gudem, Meghna Manae

Under-graduate students: Khushboo Singh

Past under-graduate students: P Sudheer Kumar
The main research focus of this laboratory is to study the excited state photophysics of fluorophores/drugs in molecular containers, various kinds of self-assembled organized structures as well as in biologically tailored systems.

Molecular containers have the ability to encase biologically relevant guests, and act as drug carriers, drug solubilizers, and drug stabilizers. The inclusion of the fluorescent guest into these nano-cavities is point of interest due to their altered excited state photophysics such as excited state proton transfer.

Graphene oxide molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA.

Bio-molecular Interactions such as drug-DNA, drug-G-quadruplex DNA, drug-RNA and protein-DNA are explored by various biophysical techniques (fluorescence, CD, ITC etc.).

ESPT dynamics and Solvation Dynamics are explored by ultrafast spectroscopy such as TCSPC and femto-second fluorescence up-conversion techniques in bio-mimicking confined environments.
The main research focus of this laboratory is to study the excited state photophysics of fluorophores/drugs in molecular containers, various kinds of self-assembled organized structures as well as in biologically tailored systems. These containers have the ability to encase biologically relevant guests, and act as drug carriers, drug solubilizers, and drug stabilizers. The inclusion of the fluorescent guest into these nano-cavities is of interest due to their altered excited state photophysics such as excited state proton transfer.

Molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA. Such as drug-DNA, drug-G-quadruplex DNA, drug-RNA and protein-DNA are explored by various biophysical techniques (fluorescence, CD, ITC etc.). A visible fluorescence switch of an eminent anti-carcinogen, ellipticine has been used to probe non-specific protein-DNA interaction.

Photophysics and Biophysics Research Group

Graduate Students: Krishna Gavvala, Raj Kumar Koninti, Sagar Satpathi, Bibhisana Roy
Past under-graduate students: Vivek Kumar, Anup Ingole
Past graduate Student: Dr. Abhigyan Sengupta (Presently, JILA post-doctoral fellow in the University of Colorado, Boulder USA)

Publications

Total number of publications: 43; Independent publications: 21

Selected Publications

External Grants

- New insight of flavin-aptamer recognition process with the help of biophysical studies. Funding Agency: CSIR, Govt. of India (January 2012-December 2015).
- Photoinduced electron transfer rate (between flavins and aromatic amino acids) in nanocavity of proteins versus bulk water. Funding Agency: DST, Govt. of India (January 2010- January 2013).

Teaching Contributions

Basic Physical Chemistry, Symmetry and Group Theory, Advanced Physical Chemistry, Photochemistry

Awards and Recognitions

- Awarded Japan Society of Promotion of Science (JSPS) fellowship in 2005 for pursuing post-doctoral research in Japan
SRINIVAS HOTHA

Associate Professor
Ph.D.: Osmania University (worked at IICT, NCL), Hyderabad, India
Post-doc.: Rockefeller University, New York, USA
Previous positions: Scientist-C then E1, National Chemical Laboratory, Pune
Joining at IISER: November 2010
Email: s.hotha@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~s.hotha

Chemical Glycobiology

In chemical glycobiology laboratory, we are interested in developing catalytic tools for glycosylation. Alkynyl glycosides were found to be excellent for carrying-out glycosidations in a stereo- and sometimes regioselective manner. The gold catalysis method developed in the group is complementary to some of the already existing methods and is found to be advantageous for the synthesis of glycopolypeptides, glycopolymers, glycomimetics, oligosaccharides and host of other molecules where glycans are represented.

Quite recently gold-catalysis repertoire has been effectively utilized for the synthesis of various carbohydrate epitopes present on the cell surfaces of infectious bacteria. The group is actively involved in the synthesis of arabinogalactan portion of the mycobacterial cell surface. We developed methods for the stereoselective syntheses of all four furanosides in a catalytic manner taking cue from mycobacteriology.

Biophysical studies on glycans: Most of the cell surface oligosaccharides are attached to either lipids or peptides to make them functional. Specifically, mycobacteria have a unique glycolipid comprising arabinose residues are in the furanosyl form and the terminal residues are esterified with cyclopropanated mycolic acids. We are trying to understand the structure-property relationship of the glycolipid composition of Mycobacterium tuberculosis. Understandings from the biophysical studies on glycolipids, shall be extended to develop biosensor for non-invasive diagnosis of Tuberculosis.

Ligation Methods: In the era of chemical biology and material science, novel ligation methods are in great demand. Significant developments around the most popular ‘click’ chemistry between azide and alkyne has shown its benefits in variety of fields. The recent addition to the list of ‘click’ protocols is the chemistry of s-tetrazines. We are currently developing s-tetrazine based strategies for the ternary and quaternary conjugates which will be utilized further in chemical biology experiments.
the synthesis of arabinogalactan portion of the mycobacterial cell surface. We developed methods for the stereoselective syntheses of all four furanosides in a catalytic manner taking cue from mycobacteriology. carbohydrate epitopes present on the cell surfaces of infectious bacteria. The group is actively involved in glycopolymers, glycomimetics, oligosaccharides and host of other molecules where glycans are represented. already existing methods and is found to be advantageous for the synthesis of glycopolypeptides, which will be utilized further in chemical biology experiments.

Biophysical studies on glycans:

In chemical glycobiology laboratory, we are interested in developing catalytic tools for glycosylation. Most of the cell surface oligosaccharides are attached to either lipids or peptides to make them functional. Specifically, mycobacteria have a unique glycolipid comprising arabinose acids. We are trying to understand the structure-property relationship of the glycolipid composition of Mycobacterium tuberculosis. Understanding from the biophysical studies on glycolipids, shall be extended to interactions.

Ligation Methods:

In the era of chemical biology and material science, novel ligation methods are in great demand. Significant developments around the most popular ‘click’ chemistry between azide and alkyne has shown its benefits in various fields. The recent addition to the list of ‘click’ protocols is the chemistry of tetrazines. We are currently developing -tetrazine based strategies for the ternary and quaternary conjugates.

External Grants

• Cascade glycosylations: A Novel Strategy for Carbohydrate Epitopes and Glycoarrays - Funding Agency: DST, India (Feb 2011-Dec 2016).
• Glycochemical studies of Mycobacterial Arabinoozymolate. Funding Agency: Indo-French Cooperation for Promoting Advanced Scientific Research (IFCPAR) India (April 2014- March 2017). [In collaboration with Prof. Theirry Benvegnu (France) and Prof. Pankaj Mandal (IISER Pune)]
• Tailoring Glycosylphosphatidylinositol Substrates and Substrate Mimetics to Study Host-Pathogen Interactions (Jan 2015-Dec 2017). [In collaboration with Prof. Sneha Sudha Komat (JNU, India)]

Teaching Contributions
Organic Synthesis 1, Organic Synthesis 2, Medicinal Chemistry, Separation Principles and Techniques, Organic Chemistry Laboratory

Awards and Recognitions
• CDRI Award for Excellence in Drug Research (2014)
• Bronze Medal of Chemical Research Society of India (2015)

Research Group

Doctoral and project students: Boddu Venkateswara Rao, Maidul Islam, Bijoyananda Mishra, Mahesh Neralkar, Ganesh Shinde, Sujit Manmode

Post-doctoral Fellows: Madhuri Vangala, Sandip Pasari, Dinanath Phulse

Past doctoral students: Shivaji A. Thadke, Abhijeet Kayastha, Ashif Y. Shaikh, Srinivasa Rao Vidadala, Suresh Kumar Gopalsamy, Ashish Tripathi, Sudhir Kashyap, Sushil Kumar Maurya, Ramakrishna I. Anegundi

Past under-graduate students: Iti Kapoor, Ravi Raja
Polymer Science

The research group has been working in the area of polymer science for the past 12 years and the group’s work is primarily focused on design and development of new macromolecular systems for application in electronics and biomaterials.

Polymers based drug delivery is an important tool for the administration of drugs in cancer treatment. New generation of enzyme responsive polysaccharides-dextran nano-vesicles, pH responsive functionalized polycaprolactone (PCL) block copolymers and shape transformable thermo-responsive amphiphiles were developed. These scaffolds were utilized for loading and delivering of multiple anticancer drugs to achieve synergistic killing of cancer cells.

Eco-friendly synthetic approaches are important for cleaner and environmental friendly production of polymer materials. A novel melt transurethane process was developed for commercial important thermoplastics polyurethanes. Recently, a new dual ester-urethane melt condensation methodology was developed for biological monomers- amino acids that produced new classes of biodegradable thermoplastics under eco-friendly and solvent free approach.

Polymers for electronics are developed based on \(\pi \)-conjugated OPV molecules that self-organized to produce three dimensional supra-structures such as cholesteric liquid crystalline (LC) mesophases. \(\pi \)-Conjugated polymer anisotropic organogels were achieved in segmented OPV polymers that facilitated the
demonstration of first example for π-conjugated photonic switches (or photonic wave plates). Thermoresponsive photonic switches were constructed for the temperature range of 25 to 160°C.

Publications

Total number of publications: 73; **Independent publications:** 56

Selected Publications

External Grants

- In the last ten years, more than 5 projects were funded by DST, New Delhi, India
- Development of Functional π-Conjugated Polymers for Photonic Applications. Funding Agency: SERB-DST under Special Initiative, India (Just Approved).

Teaching Contributions

Polymer Chemistry, Self-assembly in Chemistry, Separation Principles and Techniques, Introductory Physical Chemistry

Awards and Recognitions

- Chemical Research Society of India (CRSI) Bronze Medal 2014
- TWAS Young Affiliates-2010
- CSIR Young Scientist Award 2007 in Chemical Sciences

Research Group

Doctoral students: Smita Kashyap, P. S. Pramod, S. Anantharaj, Bapurao Surnar, Rajendra Aluri, Karnati Narasimha, Bhagyashree Kulkarni, Sonashree Saxena, Nilesh Deshpande

Under-graduate students: Thameez Mohammed, Maitreyee Mhatre

Past Doctoral students: Drs. Mahima Goel, A. Balamurugan, M. Jinish Antony, P. Anilkumar, Amrutha Rajan and Deepa Puthanparambil

Past under-graduate students: Harpreet Singh, Anuj Bisht, Uma Sridhar, Vikash Kumar
Chemical Biology: Ion channels, Lipids, and Bioconjugation

There are three major research foci of this laboratory: ion channel biology, lipid biology, and bioconjugation. All projects in the lab are inherently interdisciplinary and combine disciplines as wide-ranging as electrophysiology, molecular biology, protein expression and purification, protein chemistry and organic synthesis.

Ion Channel Biology: Our work on ion channels is focused on tetrameric cation channels, especially voltage-activated potassium (Kv) channels, voltage-activated sodium (Nav) channels, and Transient Receptor Potential (TRP) ion channels. We utilize electrophysiological approaches to elucidate how these ion channels open and close in response to specific stimuli such as voltage, hot or cold temperatures, small chemical ligands and peptide toxins produced by venomous animals. Moreover, we are developing synthetic small molecules and peptide ligands that can specifically modulate the activity of these ion channels, thereby serving as mechanistic tools and also potentially serve as therapeutic agents (an example from our work that demonstrated the mechanism of inhibition of Kv channels by guanidine compounds is depicted in Figure 1). Our recent work on targeting Nav channels for anti-epileptic drug development resulted in the discovery of a novel triazole compound that attenuates epileptic seizures in rodents (ACS Chem. Biol. 2014 9(5):1204-1212).

Lipid Biology: In comparison to proteins and nucleic the biological roles of lipids is poorly understood. The lack of powerful methods for studying lipids in cells is proving to be a major impediment in unraveling the roles of lipids in various cellular processes. To address this challenging problem, we are developing chemical biology based methods that will enable cellular incorporation of lipids possessing subtly-modified head groups endowed with elaborated function. Such modified lipids will serve as “lipid mutants” for studying the biology of lipids much in the same way protein mutants have contributed tremendously to protein biology. Our lipid mutants will help

Figure 1. Our work on the inhibition of Kv channels by guanidine compounds resulted in elucidation of the binding site of these drugs on the channel.

Figure 2. Applications of our proposed approach for introducing non natural lipids in cells.

JEET KALIA
Assistant Professor
Ph.D.: University of Wisconsin-Madison, USA
Post-doc.: National Institutes of Health, Bethesda, USA
Joining at IISER: June 2013
Email: jkalia@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~jeet/
address questions on the roles of lipids in several aspects of lipid and membrane biology including membrane protein function, membrane proteomics, cell biology of lipids and lipid imaging in both cells in culture and also in live animals (Figure 2).

Bioconjugation: Recent breakthroughs in chemical biology have enabled the development of selective methods of covalently modifying proteins. These bioconjugation approaches have been utilized for a host of applications including imaging of proteins in cells and live animals, diagnostic applications, and also for the discovery of interacting partners of proteins in cells. Despite all this progress, two major limitations remain: 1) Several existing bioconjugation linkages (for example, maleimides for thiol bioconjugation) are susceptible to hydrolysis and lack stability 2) The rates of formation of bioconjugates are too slow to enable precise spatiotemporal applications in cells. To address these limitations, we are developing new methods of bioconjugation that proceed rapidly and result in stable linkages.

Publications

Total number of publications: 15; Independent publications: 2; Patent: 1(U.S.)

Selected Publications

Teaching Contributions

Introductory Biology Laboratory, Medicinal Chemistry, Advanced Organic Chemistry Laboratory

Awards and Recognitions

- NINDS competitive postdoctoral fellowship by NIH, U.S.A. for a period of 3 years (2009-2012).
- President's silver medal for topping the graduating Integrated M.Sc. class at IIT Kharagpur (2002).

Research Group

Doctoral and project students: Rahul Nisal, Debayan Sarkar, Shaila Kulkarni and Chitra Shanbhag

Under-graduate students: Sushma Tejashri
The main research focus is on developing novel silicon based frustrated Lewis pairs (FLPs) and utilization of these Si-based FLPs to activate small molecules such as H₂, CO₂, P₄, C₆H₆ and to use them as catalysts for organic reactions. We have been involved in synthesizing examples of N-heterocyclic silylenes as base component along with various boron, carbon and silicon based Lewis acids to obtain new families of FLPs.

Gold(I) complexes and their catalytic activity is another topic of interest. In recent years gold(I) complexes have shown excellent catalytic activity in many homogeneous transformations involving C-C-π systems (alkenes, dienes, alkynes, allenes, arenes) towards the attack of a large variety of nucleophiles. In this view, we have been involved in developing PNP and PNB based Au⁺ complexes which can be further used in catalytic reactions. Utilizing a PNP system, a dimeric Au-monocation has been formed while with a PNB system monomeric Au-monocation was achieved. The luminescent properties and catalytic activities of these newly synthesized Au⁺ complexes are currently been explored in our laboratory.

SHABANA KHAN
Assistant Professor
Ph.D.: Indian Institute of Technology, Delhi, India
Post-doc.: University of Göttingen, Germany
Post-doc.: Max-Planck-Institute for Coal Research, Mülheim, Germany
Previous position: Senior Scientist, BPCL R&D centre, India
Joining at IISER: March 2013
Email: shabana@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~shabana/

Inorganic Chemistry and Catalysis

The main research focus is on developing novel silicon based frustrated Lewis pairs (FLPs) and utilization of these Si-based FLPs to activate small molecules such as H₂, CO₂, P₄, C₆H₆ and to use them as catalysts for organic reactions. We have been involved in synthesizing examples of N-heterocyclic silylenes as base component along with various boron, carbon and silicon based Lewis acids to obtain new families of FLPs.

Gold(I) complexes and their catalytic activity is another topic of interest. In recent years gold(I) complexes have shown excellent catalytic activity in many homogeneous transformations involving C-C-π systems (alkenes, dienes, alkynes, allenes, arenes) towards the attack of a large variety of nucleophiles. In this view, we have been involved in developing PNP and PNB based Au⁺ complexes which can be further used in catalytic reactions. Utilizing a PNP system, a dimeric Au-monocation has been formed while with a PNB system monomeric Au-monocation was achieved. The luminescent properties and catalytic activities of these newly synthesized Au⁺ complexes are currently been explored in our laboratory.

Figure 1. Activation of H₂

Figure 2. PNP and PNB framework based Au⁺ cations
The main research focus is on developing novel silicon based frustrated Lewis pairs (FLPs) and utilization of these Si-based FLPs to activate small molecules such as H₂, CO₂, P₂, CH₂ and to use them as catalysts for organic reactions. We have been involved in synthesizing examples of N-heterocyclic silylenes as base component along with various boron, carbon and silicon based Lewis acids to obtain new families of FLPs.

Another topic of interest. In recent years gold(I) complexes have shown excellent catalytic activity in many homogeneous transformations involving C-C-π systems (alkenes, dienes, alkynes, allenes, arenes) towards the attack of a large variety of nucleophiles. In this view, we have been involved in developing PNP and PNB based Au complexes which can be further used in catalytic reactions. Utilizing a PNP system, a dimeric Au-monocation has been formed while with a PNB system monomeric Au-monocation was achieved. The luminescent properties and catalytic activities of these newly synthesized Au complexes are currently been explored in our laboratory.

Publications

Total number of publications: 18

Selected Publications

External Grants

- Introduction of Silylene in Frustrated Lewis Pair Chemistry and their Reactivity toward Small Molecules. SERB-DST, India (September 2014-August 2017).

Teaching Contributions

Chemistry Lab II-Inorganic Chemistry, Main Group Chemistry, Transition Metal Chemistry

Research Group

Doctoral students:

Mr. Shiv Pal, Ms. Neha Kathewad
Carbohydrates play an important role in many biological systems by virtue of their lectins which recognize them. Carbohydrate-lectin interactions are involved in expansively diverse biological processes which include embryonic development, intracellular trafficking, cell-cell recognition, cell activation, cell adhesion, cell homing, endocytosis, phagocytosis, inflammation, tumor cell metastasis, and apoptosis. One main drawback for investigating carbohydrate-lectin interactions is their weak affinity to bind, which will require enhanced tools to analyze carbohydrate-lectin interplay. So far, three promising strategies have emerged from our studies: (1) designing multivalent glyco-probes using cyclodextrin templates and their utilization towards amplifying carbohydrate mediated targeting, self-assembly, and remote actuation of particles to treat tumors in cancer models; (2) developing biomimetic carbohydrate strategies to modulate carbohydrate-protein interactions and (3) shape, chiral and symmetric dependent amplification of carbohydrate-protein interactions.
Carbohydrates play an important role in many biological systems by virtue of their lectins which recognize them. Carbohydrate-lectin interactions are involved in expansively diverse biological processes which include embryonic development, intracellular trafficking, cell-cell recognition, cell activation, cell adhesion, cell homing, endocytosis, phagocytosis, inflammation, tumor cell metastasis, and apoptosis. One main drawback for investigating carbohydrate-lectin interactions is their weak affinity to bind, which will require enhanced tools to analyze carbohydrate-lectin interplay. So far, three promising strategies have emerged from our studies: (1) designing multivalent glyco-probes using cyclodextrin templates and their utilization towards amplifying carbohydrate mediated targeting, self-assembly, and remote actuation of particles to treat tumors in cancer models; (2) developing biomimetic carbohydrate strategies to modulate carbohydrate-protein interactions and (3) shape, chiral and symmetric dependent amplification of carbohydrate-protein interactions.

RAGHAVENDRA KIKKERI
Assistant Professor
Ph.D.: Weizmann Institute of Science, Israel
Post-doc.: ETH Zurich, Switzerland
Post-doc.: MPIKG. Berlin, Germany
Post-doc.: University of California, San Diego, USA
Joining at IISER: December 2010
Email: rkikkeri@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~rkikkeri

Schematic Representation of Selected Applications of Glyco-cyclodextrin

External Grants

- DST-MPG Partner group: Carbohydrate caped nanoparticles as tumor specific drug delivery system from 2011 to 2016.

Teaching Contributions

Introductory Organic Chemistry, Advanced Organic Laboratory, Chemical Biology, Bioorganic chemistry

Awards and Recognitions

- DAE young research award

Research Group

Doctoral and project students: Rohan Yadav, Sivakoti Sangabhatuni, Harikrishna Bavireddi, Madhuri Gade, D.S. Chethan, Balamurugan

Under-graduate students: Phaneendra, Catherina Alex

Post doctoral students: R.V Murthy, Preeti Chaudhari

Past students: Priya Bharate, Dr. Shadab Ali Khan
The main research focus of this laboratory is on studying ultrafast dynamics in small molecules, biomacromolecules and nanomaterials. We employ ultrafast pump-probe technique where both pump and probe can be varied from THz to deep ultraviolet.

Broad band THz spectrometer has been built in our laboratory. Broadband THz pulse of sub-picosecond duration is produced from a four-wave-mixing process in air-plasma. We have successfully implement “Air Biased Coherent Detection” scheme for broadband detection. We have achieved a bandwidth of ~20 THz in our spectrometer. Such set-up for carrying out ultra-broadband THz spectroscopy is available only in few laboratories in the whole world, and is built for the first time in India. An experimental set-up for “optical pump-THz/white light probe Spectroscopy” has already been built. This set-up will enable probing a time-dependent (transient) event using either a broadband THz or a broadband white light (WL) as probe. A temporal resolution of 50 femto-second (fs) can be achieved.

Methanol-Benzene Azeotrope have been studied using our THz spectrometer and molecular dynamics simulation (in collaboration with Dr. Arnab Mukherjee) to evaluate the delicate balance of intermolecular interactions between molecules involved which lead to the formation of azeotropic mixture.
The main research focus of this laboratory is on studying ultrafast dynamics in small molecules, biomacromolecules and nanomaterials. We employ ultrafast pump-probe technique where both pump and probe can be varied from THz to deep ultraviolet. A broadband THz spectrometer has been built in our laboratory. Broadband THz pulse of sub-picosecond duration is produced from a four-wave-mixing process in air-plasma. We have successfully implemented “Air Biased Coherent Detection” scheme for broadband detection. We have achieved a bandwidth of ~20 THz in our spectrometer. Such set-up for carrying out ultra-broadband THz spectroscopy is available only in few laboratories in the whole world, and is built for the first time in India. An experimental set-up for “optical pump-THz/white light probe Spectroscopy” has already been built. This set-up will enable probing a time-dependent (transient) event using either a broadband THz or a broadband white light (WL) as probe. A temporal resolution of 50 femto-second (fs) can be achieved.

Publications

Total number of publications: 12; Independent publications: 1

Selected Publications

External Grants

- Glycochemical Studies on Mycobacterial Arabinomycolate (with Dr. Srinivas Hohta, (IISER, Pune) Prof. Thierry, Benvegnu and colleagues (Ecole Nationale Supérieure de Chimie de Rennes)). Funding Agency: IFCPAR/CEFIPRA (February 2014- January 2017).

Teaching Contributions

Physical Chemistry (CHM 102), Chemistry Lab I-Physical Chemistry, Fundamentals of Molecular Spectroscopy, Advanced Molecular Spectroscopy, Symmetry and Group Theory

Research Group

Doctoral students: Sohini Sarkar, Y G Reddy, Sneha Banerjee, Avinash Warankar
Organometallic Chemistry

The main research focus of this laboratory is the development of highly efficient, easily accessible and environmentally friendly organic transformations by using metal complexes as catalysts.

C-H Bond activation: Construction of chemical bonds via metal-catalyzed chelation-assisted C-H bond activation of aromatics, heteroaromatics and alkenes followed by functionalization with nucleophiles or electrophiles is a powerful tool in organic synthesis. This type of functionalization is highly atom-economical and environmentally friendly. Recently, we have developed several new synthetic methodologies for the C-H bond functionalization of aromatics, heteroaromatics and alkenes in the presence of ruthenium and palladium complexes as catalysts (Figure a). By using the present protocol, various substituted alkene derivatives, ortho benzyloxylated aromatics, ortho arylated aromatics, meta halogenated benzonitriles and heterocycles were synthesized.

sp^3 C-H Bond α-arylation of substituted ketones: We have demonstrated a metal-free aerobic oxidative dehydrogenative α-arylation at the sp^3 C-H bond of substituted ketones with aromatics or heteroaromatics in the presence of K_2S_2O_8 giving hindered symmetrical and unsymmetrical benzoquinacolone derivatives under the mild reaction conditions. On the other hand, benzyl ketones reacted with aromatics providing α-diarylated ketones through carbon-carbon bond cleavage. The reaction was carried out at room temperature under an air atmosphere. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting to note that two different nucleophiles such as benzyl ketones and aromatics were coupled together without any metal which is unusual in organic synthesis (Figure b).

Awards and Recognitions

- DAE Young Scientist Research Award, BRNS, BARC, 2011
- Young Associate, Indian Academy of Sciences, Bangalore, 2012-2015
- 2013: Science Academy Medal for Young Scientists, Indian National Science Academy, New Delhi
- 2013: Alkyl Amine-ICT young scientist award by Institute of Chemical Technology, Mumbai, India
- 2014: ISCB Award of Appreciation for Chemical Science

Research Group

Doctoral and project students: Kishor Padala, Ravi Kiran Chinnagolla, Mallu Chenna Reddy, Nagnath Yadav More, R. Manikandan, R. Manoharan, Sandeep Pimparker

Under-graduate students: M. Padmaja, Arjun Vijita

Past project student: D. Perumal

Past under-graduate students: Pilli Veena

Publications

Total number of publications: 56; Independent publications: 24

Selected Publications

External Grants

The main research focus of this laboratory is to study molecular recognition processes (drug-DNA, protein-DNA) using computational methods (both classical and quantum). We calculate free energy profile for the recognition processes and from that probe into the detailed molecular mechanism.

DNA Intercalation is a method by which some anti-cancer drugs such as daunomycin, proflavine functions. Our study shows that the intercalation happens through a sequential process that defies natural fluctuation hypothesis and point towards a drug-induced cavity formation mechanism. We also showed the origin of experimentally observed millisecond timescale for the complex intercalation process of the proflavine molecule. Currently, we are working towards the dynamical effect of intercalation and protein-DNA interaction. Some of the results are shown in Fig. 1a.

Polymorphism of DNA is an interesting and fundamental biophysical phenomenon with a variety of biological implications. We have studied how, in the local dinucleotide level, the propensity of B- to A-form transition occurs in DNA (Fig. 1b). The ultimate goal of the study involved in structural transition of DNA is to find how this natural polymorphism can be used in nanodevices.
The main research focus of this laboratory is to study molecular recognition processes (drug-DNA, protein-DNA) using computational methods (both classical and quantum). We calculate free energy profiles for the recognition processes and from that probe into the detailed molecular mechanism. This is a method by which some anti-cancer drugs such as daunomycin, proflavine functions. Our study shows that the intercalation happens through a sequential process that defies natural fluctuation hypothesis and points towards a drug-induced cavity formation mechanism. We also showed the origin of experimentally observed millisecond timescale for the complex intercalation process of the proflavine molecule. Currently, we are working towards the dynamical effect of intercalation and protein-DNA interaction. Some of the results are shown in Fig. 1a.

Other studies involve protein misfolding, water residence time, azeotropic binary mixtures, etc.

Publications

Total number of publications: 30; Independent publications: 11

Selected Publications

External Grants

Teaching Contributions

Statistical Thermodynamics, Molecular Modeling and Simulation, Physical Chemistry Lab, General Chemistry

Research Group

Doctoral students: Wilbee D. Sasikala, Mandar Kulkarni, Sathish Dasari, Reman K. Singh, Debasis Saha

Int. Ph.D. students. Hridya V. M.

Past under-graduate students: Shreyas Supekar, Hutashan Vajpeyi
The main research focus of our group is on developing functional inorganic materials using solution processed semiconductor nanocrystal modules. The work can be divided into three major sections (i) material design mainly using colloidal organic-free nanocrystals, (ii) spectroscopic studies using luminescence and XAFS, and (iii) magneto- and opto- electronic applications forming flexible transparent conductor, solar cell and carrier mediated magnetic coupling.

Electronically Coupled All-Inorganic Nanocrystals (Surface Modification): Integration of nanocrystals in electronic and optoelectronic devices like photovoltaics, light-emitting-diodes (LEDs), photodetectors and printable electronics depends on the electronic property of the nanocrystal film, and thus on the interconnect between adjacent nanocrystals. However, colloidal nanocrystals are generally capped with an insulating organic layer. Consequently, the benefits of quantum confinement effect and solution processibility cannot be utilized because of inefficient injection or extraction of charge carriers. We are interested in designing organic-free semiconductor nanocrystals for various optoelectronic applications including solution processed transparent conductor and photovoltaics. Also, we employ such organic-free nanocrystals for chemical sensing simply because the fact that the analyte can interact easily with the bare nanocrystal surface, therefore, increasing sensitive.

Plasmonics, Electrical Conductivity, and Electron Mediated Magnetism from Doped Semiconductor Oxides. We are developing a unique category of material exhibiting the above mentioned three properties simultaneously, via doping a magnetic ion in a transparent conducting oxide nanocrystal. For example, in Fe-Sn codoped In$_2$O$_3$ nanocrystals, localized surface plasmon resonance...
The main research focus of our group is on developing functional inorganic materials using solution processed semiconductor nanocrystal modules. The work can be divided into three major sections (i) material design mainly using colloidal organic-free nanocrystals, (ii) spectroscopic studies using luminescence and XAFS, and (iii) magneto- and opto-electronic applications forming flexible transparent conductor, solar cell and carrier mediated magnetic coupling.

Integration of nanocrystals in electronic and optoelectronic devices like photovoltaics, light-emitting-diodes (LEDs), photodetectors and printable electronics depends on the electronic property of the nanocrystal film, and thus on the interconnect between adjacent nanocrystals. However, colloidal nanocrystals are generally capped with an insulating organic layer. Consequently, the benefits of quantum confinement effect and solution processibility cannot be utilized because of inefficient injection or extraction of charge carriers. We are interested in designing organic-free semiconductor nanocrystals for various optoelectronic applications including solution processed transparent conductor and photovoltaics. Also, we employ such organic-free nanocrystals for chemical sensing simply because the fact that the analyte can interact easily with the bare nanocrystal surface, therefore, increasing sensitive.

ANGSHUMAN NAG
Ramanujan Fellow
Ph.D.: Indian Institute of Science, Bangalore, India
Post-doc.: Indian Institute of Science, Bangalore, India
Post-doc.: University of Chicago, USA
Joining at IISER: November 2012
Email: angshuman@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~angshuman/

Colloidal Semiconductor Nanocrystals for Optoelectronics

Plasmonics, Electrical Conductivity, and Electron Mediated Magnetism from Doped Semiconductor Oxides. We are developing a unique category of material exhibiting the above mentioned three properties simultaneously, via doping a magnetic ion in a transparent conducting oxide nanocrystal. For example, in Fe-Sn codoped In₂O₃ nanocrystals, localized surface plasmon resonance is observed in near to mid infrared region along with room temperature ferromagnetism and electrical conductivity >1 S/cm. More importantly, the electron mediated magnetic coupling can lead to spin based applications.

Publications

Total number of publications: 34; Independent publications: 7

Selected Publications

External Grants

- DST-SERB Ramanujan Fellow Research Grant (November 2012-November 2017).

Teaching Contributions
Solid State Chemistry, Physical Chemistry of Solutions, Chemistry Lab II-Inorganic Chemistry, Advanced Inorganic Laboratory

Awards and Recognitions

- National Academy of Science India (NASI)-Young Scientist Platinum Jubilee Award 2014
- Associate of the Indian Academy of Sciences Bangalore 2014
- Toulouse medal for the best Ph. D. thesis in SSCU by IISc Bangalore, 2009

Research Group

Doctoral and project students: Abhishek Swarnkar, Bharat Tandon, G. Shiva Shanker, Kadlag Kiran Parashram, Metikoti Jagadeeswara Rao, Naziya Paaveen, Wasim Jeelani Mir

Under-graduate students: Aditya Katti, Aswathi Ashok, Bala Gopal M, Sreejith P Nandan
The main research focus of this laboratory is on the design and synthesis of hybrid nanostructures for fundamental as well as applied studies. The research involves various techniques in nanoscience and nanotechnology to address two global concerns: (1) energy and (2) therapeutics.

The focus is on providing insights into the basic question - how to improve the stability and specific targeting of NPs in biological studies. Many factors such as size, shape and surface chemistry, decide the fate of the interactions between NPs and biosystems. Among them, the surface chemistry (charge, functionality, ligand arrangement, hydrophobicity and hydrophilicity) plays a crucial role. Here, the emphasis is on tuning the surface properties of metal/semiconductor NPs by incorporating both ionizable (to achieve variable surface charge) and biotargeting groups, simultaneously. These multifunctional NPs is expected to exhibit advanced biophysical properties such as improved biostability and circulation time, controlled cellular uptake, reduced non-specific binding etc.

Fundamental research: Integration of nanomaterials into higher order nanostructures results in new and advanced properties that are absent at the individual level. The main aim here is to develop simple and robust synthetic strategies through which the interaction between individual nanoparticles can be controlled in a precise manner. The well-ordered nanoparticle suprastructures formed as a result of these controlled interactions will be used for sensing and electrical studies. Emphasis is also given for developing new materials platform for studying the electron transport and mechanical properties at the nanoscale.

Energy research: The ultimate aim here is to improve the stability of the charge separated species in a light harvesting material, and thereby improve its overall efficiency. Efforts are to develop heterostructures based on metal and semiconductor nanomaterials for studying the effect of geometries, compositions and configurations on the stability of photogenerated electron-hole pairs. The inclusion of metal nanostructures, as one of the components, is expected to enhance the overall efficiency of the photovoltaic device due to its (i) electron storage/transport capability and (ii) light concentration property through a strong near-field enhancement by the surface plasmon effect.
The main research focus of this laboratory is on the design and synthesis of hybrid nanostructures for fundamental as well as applied studies. The research involves various techniques in nanoscience and nanotechnology to address two global concerns: (1) energy and (2) therapeutics.

PRAMOD P. PILLAI
Assistant Professor
Ph.D.: National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
Post-doc.: Technische Universität Dortmund, Germany
Post-doc.: Northwestern University, Illinois, USA
Joining at IISER: June 2014
Email: pramod.pillai@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~pramod/

Functional Nanomaterials:
From Photochemistry to Biotargeting

Fundamental research:
Integration of nanomaterials into higher order nanostructures results in new and advanced properties that are absent at the individual level. The main aim here is to develop simple and robust synthetic strategies through which the interaction between individual nanoparticles can be controlled in a precise manner. The well-ordered nanoparticle suprastructures formed as a result of these controlled interactions will be used for sensing and electrical studies. Emphasis is also given for developing new materials platform for studying the electron transport and mechanical properties at the nanoscale. The ultimate aim here is to improve the stability of the charge separated species in a light harvesting material, and thereby improve its overall efficiency. Efforts are to develop heterostructures based on metal and semiconductor nanomaterials for studying the effect of geometries, compositions and configurations on the stability of photogenerated electron-hole pairs. The inclusion of metal nanostructures, as one of the components, is expected to enhance the overall efficiency of the photovoltaic device due to its (i) electron storage/transport capability and (ii) light concentration property through a strong near-field enhancement by the surface plasmon effect.

Research Group

Project student: Sumit Bhosale

Nano-bio interactions: The focus is on providing insights into the basic question - how to improve the stability and specific targeting of NPs in biological studies. Many factors such as size, shape and surface chemistry, decide the fate of the interactions between NPs and biosystems. Among them, the surface chemistry (charge, functionality, ligand arrangement, hydrophobicity and hydrophilicity) plays a crucial role. Here, the emphasis is on tuning the surface properties of metal/semiconductor NPs by incorporating both ionizable (to achieve variable surface charge) and biotargeting groups, simultaneously. These multifunctional NPs is expected to exhibit advanced biophysical properties such as improved biostability and circulation time, controlled cellular uptake, reduced non-specific binding etc.

Publications

Total number of publications: 13

Selected Publications

External Grants

- Curvature Controlled Chemical Reactivity and Location Specific Assembly of Nanoparticles. Funding Agency: BRNS-DAE, India. *(Submitted).*

Teaching Contributions

Fundamentals of Molecular Spectroscopy, Chemistry Laboratory I - Physical Chemistry

Awards and Recognitions

- Alexander von Humboldt Fellow
Biomolecular Structure and Dynamics

Current interests:
- Understanding the role of fast, local residue motion in enzyme catalysis
- Structure-function relationships in enzymes to understand interactions with small molecules, folding and aggregation in proteins
- Recognition and repair of damaged DNA by enzymes to understand mechanisms of drug resistance
- Excited state dynamics, intramolecular relaxation and reactivity of nucleic acids, aminoacids and flavins
- Structure and organization of melanin pigment in mammals, understanding polymerization and aggregation processes

Excited state dynamics of nucleobases and nucleic acids: DNA Nucleobases have fascinating, unusual photophysics. They have extraordinarily short-lived excited states (~500fs - few ps) that provide stability under ultraviolet radiation making them ideal carriers of genetic information. While the four common nucleobases have been extensively studied, very little is known of other biologically important nucleobases. I am interested in understanding: the relationship between structure and photophysics of nucleobases, the mechanisms of relaxation upon photoexcitation, and reorganization of inter- and intramolecular coupling with different excocyclic substitutions, protein and solvent environments. We have made extensive ultraviolet resonance Raman measurements and computational calculations of ground and excited state structures and dynamics of nucleobases. We have established their solution structures, vibrational signatures, protonation states and made quantitative measurements of Raman intensity profiles. We are now using wave packet dynamical modeling in conjunction with experimental and ab initio data to determine excited state structure and delineate homogeneous and inhomogeneous contributions at <100 fs.

Role of fast local motion in enzyme catalysis: My goal is to measure the femtosecond dynamics of nucleobases, aminoacids and proteins in three contexts. With a small protein, Barstar we have measured the timescale and magnitude of residue dynamics in the core of natively folded protein. Increasing the complexity of the system, we next wish to understand to measure femtosecond dynamical coupling between a nucleotide substrate and an enzyme, human HGPRT, a ribosyl transferase. We wish to understand the role of the fast, local motions in assisting the chemical step of conversion of substrates to products.

Structure and organization of the melanin pigment: Melanin is one of the least understood biopolymers. Its unusual properties – optical opacity, heterogeneity and insolubility make it a challenging...
system to work with. We are using a host of biophysical techniques and computational modeling to develop fundamental understanding of the structure and organization of the melanin pigment in isolation and within intact human cells.

Publications

Total number of publications: 23; Independent publications: 11

Selected Publications

External Grants

- Biophysical studies of structure and organization of human pigment melanin, Program Grant, DBT, India
- Mechanisms of recognition and repair of unwanted methylation on DNA by the repair enzyme AlkB, DBT, India
- Recognition and repair of oxidative damage in DNA by Formamidopyrimidine DNA glycosylase, DBT, India

Teaching Contributions

Thermodynamics, Fundamentals of Molecular Spectroscopy, Advanced Molecular Spectroscopy, Physical Chemistry Laboratory

Awards and Recognitions

- Innovative Young Biologist Award, DBT, India
- Max-Planck India Fellow

Research Group

Doctoral and project students: Sayan Mondal, Vishakha Karnawat, Sudeb Ghosh, Yashwant Kumar, Anil Yadav, Shahila Mohammed, Prashant Badgujar

Under-graduate students: Arya Thampi, Siddhartha Sohoni

Past doctoral students: Dr. Spriha Gogia, Dr. Namrata Jayanth, Dr. Erix Milan-Garcés

Past under-graduate students: Abhishek Kumar, Sagar Gore, Varun Kumar
Developing New Technologies for Accurate and Specific Detection of "Active Enzymes" In Vivo Study of enzyme function at single molecule resolution with very high substrate specificity is still a technical challenge. We have been interested in study of purified enzymes and cell/tissue lysates to monitor their active function in native conditions in the milieu of all other components of living cells, with very high resolution and exquisite specificity. Such studies will help understand the precise chemistry behind enzyme-substrate interactions and in regulation of complex biochemical reactions under various conditions. We are developing technology to study enzyme function in vivo at very high temporal resolution and substrate specificity with application to understand diseases and test the efficiency of targeted drugs. Major effort of our research is the design and synthesis of chemical reporters (both small molecule & macromolecule) to probe the function of particular enzyme function in vivo. The synthesized probes will be validated at different levels starting from testing with purified enzymes, cellular validation, in vivo and ex vivo validation. This kind of bottom-up approach is must for accurate and specific detection of active enzymes in vivo.

BRITTO S. SANDANARAJ
Assistant Professor
Ph.D.: University of Massachusetts - Amherst, USA
Post-doc.: Novartis Institutes for Biomedical Research (NIBR), Inc - Boston & The Scripps Research Institute, California, USA
Previous position: Senior Scientist, RNAi Therapeutics, NIBR, Boston, USA
Joining at IISER: February 2014
Email: sandnaraj.britto@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~sandanaraj.britto/index.html

Chemical Biology/Physiology & Optical Molecular Imaging

Developing New Technologies for Accurate and Specific Detection of "Active Enzymes" In Vivo Study of enzyme function at single molecule resolution with very high substrate specificity is still a technical challenge. We have been interested in study of purified enzymes and cell/tissue lysates to monitor their active function in native conditions in the milieu of all other components of living cells, with very high resolution and exquisite specificity. Such studies will help understand the precise chemistry behind enzyme-substrate interactions and in regulation of complex biochemical reactions under various conditions. We are developing technology to study enzyme function in vivo at very high temporal resolution and substrate specificity with application to understand diseases and test the efficiency of targeted drugs. Major effort of our research is the design and synthesis of chemical reporters (both small molecule & macromolecule) to probe the function of particular enzyme function in vivo. The synthesized probes will be validated at different levels starting from testing with purified enzymes, cellular validation, in vivo and ex vivo validation. This kind of bottom-up approach is must for accurate and specific detection of active enzymes in vivo.
Developing New Technologies for Accurate and Specific Detection of “Active Enzymes” in Vivo

Study of enzyme function at single molecule resolution with very high substrate specificity is still a technical challenge. We have been interested in study of purified enzymes and cell/tissue lysates to monitor their active function in native conditions in the milieu of all other components of living cells, with very high resolution and exquisite specificity. Such studies will help understand the precise chemistry behind enzyme-substrate interactions and in regulation of complex biochemical reactions under various conditions. We are developing technology to study enzyme function in vivo at very high temporal resolution and substrate specificity with application to understand diseases and test the efficiency of targeted drugs. Major effort of our research is the design and synthesis of chemical reporters (both small molecule & macromolecule) to probe the function of particular enzyme function in vivo. The synthesized probes will be validated at different levels starting from testing with purified enzymes, cellular validation, in vivo and ex vivo validation. This kind of bottom-up approach is must for accurate and specific detection of active enzymes in vivo.

BRITTO S. SANDANARAJ
Assistant Professor
Ph.D.: University of Massachusetts - Amherst, USA
Post-doc.: Novartis Institutes for Biomedical Research (NIBR), Inc - Boston & The Scripps Research Institute, California, USA
Previous position: Senior Scientist, RNAi Therapeutics, NIBR, Boston, USA
Joining at IISER: February 2014
Email: sandnaraj.britto@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~sandanaraj.britto/index.html

Chemical Biology / Physiology & Optical Molecular Imaging Research Group

Doctoral and Project Students: Mohan Kumar Reddy, Pavan Kumar Bhandari
Project Students: Santosh Surve, Ananth Kumar
Under-graduate Students: Jocinth Selvakumar

Publications

Total number of publications: 14

Selected Publications

Teaching Contributions

Chemical Biology, Organic Chemistry lab.

Research Group

Doctoral and Project Students: Mohan Kumar Reddy, Pavan Kumar Bhandari
Project Students: Santosh Surve, Ananth Kumar
Under-graduate Students: Jocinth Selvakumar
Chemical Biology: Nucleic Acid Chemistry and Biophysics

My group is interested in developing tools to assess biological events by utilizing contemporary nucleic acid functions and synthetic biology. In particular, we are interested in developing biophysical tools that would enable the study of nucleic acid structure, dynamics and function in vitro and in cells. We are also interested in developing multifunctional nucleolipid conjugates that could self-assemble into nanofibres, nanotubes and gels. We expect that these self-assemblies would provide platforms for designing biosensors, biomaterials and scaffolds for non(template oligomerization of nucleic acids.

Functionalized nucleoside analogues: We have initiated a research program to develop structurally non-perturbing and conformation-sensitive fluorescent nucleoside analogue probes for studying nucleic acid structure, dynamics and recognition properties. Some of the analogues, which we have developed, are highly sensitive to conformational changes. We have utilized them in developing fluorescence assays to (i) detect abasic sites (depurinated site) in DNA and RNA, (ii) monitor RNA-drug binding and (iii) study oligonucleotide dynamics in cell-like confined environment. Currently, we are developing multifunction nucleoside probes, which could be used to study the structure and function of nucleic acid simultaneously by fluorescence and NMR spectroscopy and by X-ray crystallography.

Chemical labeling and imaging of RNA: We have developed a practical chemical labeling and imaging technique for cellular RNA by using novel toolbox made of azide- and alkyne-modified UTP analogues. These analogues are readily incorporated into transcribing RNA by endogenous RNA polymerases, which can be posttranscriptionally labeled with a variety of probes by bioorthogonal reactions such as click and Staudinger ligation reactions.
Staudinger ligation reactions. can be posttranscriptionally labeled with a variety of probes by bioorthogonal reactions such as click and these analogues are readily incorporated into transcribing RNA by endogenous RNA polymerases, which technique for cellular RNA by using novel toolbox made of azide- and alkyne-modified UTP analogues.

nucleoside probes, which could be used to study the structure and function of nucleic acid simultaneously by fluorescence and NMR spectroscopy and by X-ray crystallography.

Some of the analogues, which we have developed, are non-perturbing and conformation-sensitive fluorescent nucleoside analogue probes for studying nucleic acid structure, dynamics and recognition properties. These self-assemblies would provide platforms for designing biosensors, interested in developing multifunctional nucleolipid conjugates that could self-assemble into nanofibres, would enable the study of nucleic acid structure, dynamics and function in vitro and in cells. We are also acid functions and synthetic biology. In particular, we are interested in developing biophysical tools that biomaterials and scaffolds for nontemplate oligomerization of nucleic acids. We have initiated a research program to develop structurally

Published articles include:

- Sabale, P. M.; George, J. T.; Srivatsan, S. G. Base-modified PNA-graphene oxide platform as a turn-on fluorescence sensor for the detection of human telomeric repeats. Nanoscale 2014, 6, 10460-10469.

External Grants

- Equipment grant. Funding Agency: Alexander von Humboldt Foundation, Germany.

Teaching Contributions

Awards and Recognitions

- Emerging young scientist in India: awarded at the Chemical Frontiers Conference 2014
- RSC West India Section: Early Career Scientist award 2012
- IUPAC Prize for Young Chemists, 2004

Research Group

Doctoral students: Maroti Pawar, Anupam Sawant, Arun Tanpure, Pramod Sabale, Ashok Nuthanakanti, Sudeshna Manna, Jerrin Thomas George, Manisha Walunj

Undergraduate students: Sarangamath Sangamesh

Past undergraduate students and project fellows: Haritha Rao, Anurag Agrawal, Pooja Pathje, Progya Mukherjee, Shewta Yelgaonkar, Siddheshwar Aland
Synthesis, Self-Assembly and Sensing

The main research focus of this laboratory is to combine the knowledge of organic synthesis and supramolecular interactions to design molecules for functional applications.

Targeted synthesis of molecules is essential in total synthesis, medicinal chemistry, chemical biology, supramolecular chemistry, etc. We have established Cu(I) catalyzed aldehyde-amine-alkyne coupling reaction as an efficient methodology for the construction of (2S,3R)-α-amino alcohol derivatives. The methodology was applied further in the synthesis of various natural products. We have also developed [1,3]-amino group migration strategy for the synthesis of acrylamidines.

Self-assembly of molecules plays crucial roles in diverse physical, chemical and biological phenomena. Our interest is to design artificial supramolecular ion channels and pores, and mimic the functions their natural siblings. We have constructed unimolecular ion channels based on cyclo-oligo-glucosamines for tuning of ion transport activity. We have also reported mannitol based rosette ion channels. These channels allow selective anion transport via a hopping mechanism of ion from one rosette to the next.

Sensing of species that are of either biological or environmental interests, is essential for understanding their functions and effects. Our laboratory has developed large number of fluorescent probes for the
sensing of thiols (e.g. biothiols, aryl thiols, H₂S), anions (e.g. fluoride ion), cations (e.g. cations), etc. These probes are useful for rapid, selective and sensitive detection of respective analytes, and applicable for live cell imaging studies.

Publications

Total number of publications: 36 **Independent publications:** 23

Selected Publications

External Grants

- Studies on non-covalent modulation of gating and selectivity of synthetic ion channels. Funding Agency: SERB-DST, India (May 2013 – April 2016).
- Study of transmembrane ion channel activity of cyclo-(1→6)-β-D-glucosamine derivatives and evaluation of their antibacterial potential. Funding Agency: DST, India under DST-RFBR scheme (Sep, 2011 – Sept 2013).

Teaching Contributions

Self-assembly in chemistry, Structural methods and analysis, Physical organic chemistry, Introductory chemistry III - Organic chemistry, Organic chemistry laboratory courses, Lab training/theory projects

Research Group

Doctoral and project students: Dnyaneshwar Kand, Sharad Chandrakant Deshmukh, Dinesh Pratapsinh Chauhan, Tanmoy Saha, Arundhati Roy, Sopan Shinde, Sanjib Dey, Manjit Kaur

Under-graduate students: Pratyush K. Mishra, Shivgan Aishwary Tukaram, Konoya Das

Past doctoral students: Dnyaneshwar Kand

Past under-graduate students: Ashutosh Priyadarshi, Sreejith J. Varma
The main research focus of this laboratory is on designing and developing porous solids for application in CO₂ capture and in capture and separation of other industrially valuable gases. The chemistry includes the functionalization of the surfaces of the pores with gas specific functionalities. The materials generated as crystals or crystalline powders are characterized using SXRD, PXRD, SEM, TEM etc. We also use powder based structural solution techniques such as Reitveld, Pawley routines.

R. VAIDHYANATHAN
Assistant Professor

Ph.D.: JNCASR, Bangalore, India

Post-doc.: University of Liverpool, UK

Post-doc.: University of Calgary, Canada

Joining at IISER: February 2012

Email: vaidhya@iiserpune.ac.in

URL: http://www.iiserpune.ac.in/~vaidhya/

Advanced Porous Materials Chemistry

The main research focus of this laboratory is on designing and developing porous solids for application in CO₂ capture and in capture and separation of other industrially valuable gases. The chemistry includes the functionalization of the surfaces of the pores with gas specific functionalities. The materials generated as crystals or crystalline powders are characterized using SXRD, PXRD, SEM, TEM etc. We also use powder based structural solution techniques such as Reitveld, Pawley routines.
Other areas of interest pertain to developing chiral solids for heterogeneous enantio-separation and catalysis. We develop hierarchy of inorganic-organic solids capable of exhibiting properties ranging from insulating to semi conducting to conducting. Such solids would be engineered for their potential application in fuel cells, solar cells and other areas of alternate energy.

Publications

Total number of publications: 40; Independent publications: 2

Selected Publications

External Grants

- Industrial Grant via a MoU between Enovex, Canada and IISER Pune, (May 2012-present).
- Centre for Excellence in Energy. Funding Agency: MHRD, India (October 2014).

Teaching Contributions

Inorganic chemistry to freshmen and Advanced Materials Chemistry for graduate students

Research Group

Doctoral students: Shyamapada Nandi (Prime Minister Fellow), Shalini, Aparna Banerjee (Prime Minister Fellow), Dinesh Mullangi

Under-graduate students: Bhavin Choksi and Nidhi Sudhir
The main research focus of this laboratory lies in the application of quantum chemistry methods, force-field development and application of Molecular Dynamics simulations to characterize molecular and nano-scale properties of soft materials of relevance to energy storage and conversion.

Force-Fields are developed for Triflic acid fragments as Proton Conducting Groups of Polymer Electrolyte Membranes (PEM). Molecular Dynamics (MD) simulations are used for characterization of structural properties (Radial Distribution Functions, see schematic Figure a) of Perfluorosulfonic Acid and Benz-imidazole based PEMs and molecular transport under various fuel cell operating conditions.

Mechanism of Proton Transport in Ionic Liquid Doped Membranes is investigated (Figure b) using Gas-Phase Quantum Chemistry Calculations. Structure and Dynamics of hydrated Imidazolium Ionic Liquids is also characterized using MD simulations.

Density Functional Theory (with dispersion included functionals) accurately predict spectral properties of occupancy of methane and hydrogen in cages (Figure c) of clathrate hydrates and supports Raman spectroscopy experiments.
The main research focus of this laboratory lies in the application of quantum chemistry methods, force-field development and application of Molecular Dynamics simulations to characterize molecular and nano-scale properties of soft materials of relevance to energy storage and conversion.

For Triflic acid fragments as Proton Conducting Groups of Polymer Electrolyte Membranes (PEM). Molecular Dynamics (MD) simulations are used for characterization of structural properties (Radial Distribution Functions, see schematic Figure a) of Perfluorosulfonic Acid and Benz-imidazole based PEMs and molecular transport under various fuel cell operating conditions. In Ionic Liquid Doped Membranes is investigated (Figure b) using Gas-Phase Quantum Chemistry Calculations. Structure and Dynamics of hydrated Imidazolium Ionic Liquids is also characterized using MD simulations.

Theoretical basis for these simulations is provided by computational chemistry methods incorporated within Density Functional Theory (DFT), and with dispersion included functionals, accurately predict spectral properties of occupancy of methane and hydrogen in cages (Figure c) of clathrate hydrates and supports Raman spectroscopy experiments.

ARUN VENKATNATHAN
Associate Professor
Ph.D.: Indian Institute of Technology, Bombay, India
Post-doc.: UCLA, University of Utah, Pacific Northwest National Laboratory
Assistant Professor: July 2008 – December 2014, IISER-Pune
Associate Professor: December 2014 – Present date, IISER-Pune
Email: arun@iiserpune.ac.in
URL: http://www.iiserpune.ac.in/~arun/

Computational Chemistry of Materials for Energy

Research Group

Doctoral and project students: Minal More, Praveen Kumar, Rakesh Pant, Prabhat Prakash
Under-graduate student: Sourabh
Past Postdoc: Dr. Milan Kumar (Faculty at RGIPT)
Past doctoral students: Dr. Anurag Sunda (JNCASR, Bengaluru), Dr. K. R. Ramya (University of Iceland)
Past under-graduate student: Rohit Kumar

Publications

Total number of publications: 33; Independent publications: 18

Selected Publications

External Grants

Teaching Contributions

Introductory Physical Chemistry, Quantum Chemistry, Advanced Physical Chemistry Laboratory, Molecular Modeling and Simulation
Electrochemistry, Energy Storage and Conversion

The main research focus of our energy laboratory is understanding the complex phenomena at the electrode/electrolyte interface by a range of electrochemical, microscopic and spectroscopic techniques and extending the fundamental understanding we gain at the molecular level to design cost effective, economical and environmentally friendly energy storage and conversion devices. Further in a different perspective we are evangelistic in exploring new horizons in electrochemistry for developing novel interfaces for electrode/electrolyte interface by a range of electrochemical, microscopic and spectroscopic techniques and applications ranging from selective sensors to electro-organic synthesis. My main research areas are: Interfacial Electrochemistry, Fuel cells, Supercapacitors, Batteries and Sensors.

Publications

Total number of publications: 10

Selected Publications

External Grants

- Rechargeable CO₂/O₂ electrode for air breathing Energy Storage Devices. Funding Agency: SERB-DST, India. Submitted.

Awards and Recognitions

- Rhone-Alps research fellowship-French Embassy-2009
- EPSRC research fellowship-UK-2011
Main Group Chemistry-Catalysis and Materials Applications

Our research focus is to expand the chemical functionalities of low-valent compounds spanning the Groups 13-15 of the periodic table. Currently, we have two broad research targets: 1. Our aim is to synthesize poly(phenylenevinylene) (PPV) analogues involving homo- or hetero-nuclear bonds in the polymer backbone that will conceptually mimic inorganic semiconductors such as gallium phosphide or indium arsenide. 2. We will explore the stability of newly synthesized multiply bonded transition metal-silicon compounds and their potential applications in the fields of catalysis, coordination polymers, conducting materials etc. We will also stabilize metal-free main-group compounds in order to primarily utilize them for small molecule activations and ultimately in catalysis.

Publications

Total number of publications: 18

Selected Publications

Awards and Recognitions

- Best Short Lecture Award: 17th International Symposium on Silicon Chemistry (ISOS), Berlin, 2014.
- Krupp-Lehrstuhl fur Allgemeine und Anorganische Chemie: Saarland University, Germany, October 2011 - May 2014.
- CREST Fellowship, Osaka University, Japan, April 2010 - July 2011.
- Toyota Fellowship, Osaka University, Japan, December 2009 - March 2010.
The main research focus of this laboratory is to develop novel synthetic routes to synthesize highly monodispersed multifunctional magnetic nanocrystals using suitable surfactants that are dispersible in both water as well as organic solvents (see Figure 1).

The group has reported a strategy to obtain a stable thin film of magnetic nanocrystals at the air/water interface utilizing Langmuir-Blodgett (LB) method. This strategy can be extended to any similar systems.

The group is also focusing on designing multifunctional magnetic-plasmonic hybrid nanostructures by utilizing novel synthetic routes. Emphasis is given to obtain mesoporous magnetic-plasmonic hybrid materials, suitable for biomedical applications and in active plasmonic devices (see Figure 1 G & H).
A detailed examination of the effect of induced off-stoichiometry on structural, thermal and magnetic properties of nickel cobaltite, nanoparticles has been reported. A comparison of ZFC magnetization of off-stoichiometric (Ni$_{0.75}$Co$_{0.25}$O$_4$) and stoichiometric (NiCo$_2$O$_4$) nanoparticles show stronger exchange interaction value for annealed off-stoichiometric samples.

Publications

Selected Publications

External Grants

Teaching Contributions

Physical Chemistry of Solutions, Solid State Chemistry, Chemistry Lab I- Physical chemistry, Chemistry Lab II- Inorganic Chemistry, Advanced Inorganic Chemistry Laboratory, Laboratory Theory Course

Research Group

Past under-graduate students: D. Pravarthana, Akula VenuMadhav, Arya Thampi, Maddala Bala Gopal
Our research interest is to develop novel anti fungal compounds to counter the resistance and the side effects associated with currently available drugs. We have focused not only in the development of new chemical classes of compounds but also to identify novel biological pathways that can be disrupted resulting in the effective control of fungal pathogens. In pursuit of this we have selected Chitin synthase as our initial target because of its presence in all the fungi. A new method for the glycosidation of Nucleoside has been developed and extensively used to introduce the bases into the scaffolds. Many of these compounds have shown encouraging activity using specifically developed Haploinsufficiency assay. Appropriate chemical modifications are in progress.

Other interests

- Outreach programs for the motivation of the students to take up careers in Science Education of; special Children.

Teaching Contributions

Teaching experience at postgraduate and graduate level for 20 yrs
Visiting faculty in Dept. of Biotechnology, University of Pune
Visiting faculty in Institute of Bioinformatics and Biotechnology, University of Pune
Visiting faculty in Garware college, Pune

Awards and Recognitions

- DAAD Research Ambassador, India
- Honorary advisor to German academic exchange service
- Fellow of the Maharashtra Academy of Sciences
- Visiting Professor at Bielefeld University, Germany
- Best teacher Award, PVG Pune
- Lead Indian chemistry Olympiad teams to London and Hungary
Our research interest is to develop novel anti fungal compounds to counter the resistance and the side effects associated with currently available drugs. We have focused not only in the development of new chemical classes of compounds but also to identify novel biological pathways that can be disrupted resulting in the effective control of fungal pathogens. In pursuit of this we have selected Chitin synthase as our initial target because of its presence in all the fungi. A new method for the glycocidation of Nucleoside has been developed and extensively used to introduce the bases into the scaffolds. Many of these compounds have shown encouraging activity using specifically developed Haploinsufficiency assay. Appropriate chemical modifications are in progress.

Outreach programs for the motivation of the students to take up Science Education of; special Children.

Teaching experience at post graduate and graduate level for 20 yrs

Visiting faculty in Dept. of Biotechnology, University of Pune

Visiting faculty in Institute of Bioinformatics and Biotechnology, University of Pune

Visiting faculty in Garware college, Pune

DAAD Research Ambassador, India

Honorary advisor to German academic exchange service

Fellow of the Maharashtra Academy of Sciences

Visiting Professor at Bielefeld University, Germany

Best teacher Award, PVG Pune

Lead Indian chemistry Olympiad teams to London and Hungary

Other interests

Teaching Contributions

Awards and Recognitions

ARVIND ANANT NATU
Ph.D.: Post-doc.: Post-doc.: Current position: Joining at IISER: Email: URL: Bioorganic Chemistry

Staff Profile

Mr. Mahesh Jadhav
Designation: Technical Officer
Qualification: M. Sc. (Analytical Chemistry)
Date of Joining: 2 December 2013

Mr. Nitin Dalvi
Designation: Technical Assistant
Qualification: M. Sc. (Organic Chemistry)
Date of Joining: 12 November 2012

Mr. Suresh C Prajapat
Designation: Scientific Assistant
Qualification: M.Sc. (Analytical Chemistry)
Date of Joining: 15 July 2009

Mr. Yathish T. S.
Designation: Laboratory Technician
Qualification: 2nd Pre university course
Date of Joining: 11 March 2013

Mrs. Megha K. Paygude
Designation: Laboratory Assistant
Qualification: M.Sc. (Organic Chemistry)
PG diploma in analytical chemistry
Date of Joining: 18 February 2013

Mr. Ganesh Dimber
Designation: Laboratory Assistant
Qualification: B.Com.
Date of Joining: 10 March 2014
Mrs. Swati Manohar Dixit
Designation: Technical Assistant (MALDI)
Qualification: M.Sc. Biotechnology
Date of Joining: 1 July 2011

Mrs. Nayna Ajit Nikam
Designation: Technical Assistant (HRMS)
Qualification: M.Sc. (Analytical Chemistry)
Date of Joining: 20 December 2013

Mrs. Tejasvi Mahendra Tajane
Designation: Teaching Assistant
Qualification: M.Sc. (Analytical Chemistry)
Date of Joining: 24 December 2009

Mr. Mahendra B. Patil
Designation: Teaching Assistant
Qualification: M.Sc. (Inorganic Chemistry)
Date of Joining: 4 January 2010

Ms. Hemlata. S. Phadke
Designation: Teaching Assistant
Qualification: M.Sc. (Organic Chemistry)
Date of Joining: 7 October 2010
The ideology behind the chemistry programme

The chemistry programme has been broadly divided into three groups: physical chemistry, inorganic chemistry and organic chemistry. Each semester has at least “core” course (4-credit) from these groups that a student may opt for. They are also arranged in sequence so that all topics in a particular group are covered by the end of the eighth semester. In addition to these core courses, students also have an option of choosing a potpourri of 3-credit courses. These 3-credit courses are not only important for students who wish to major in chemistry but also useful for students who wish to choose chemistry as a minor discipline of interest.
Suggestions to students wanting to “major in Chemistry”

Students who wish to study chemistry as the major subject of interest may opt for a majority of the core courses offered each semester and as many electives as possible in chemistry. Several sequences are available for students to choose from such as organic, inorganic and physical chemistry. If the student is interested in inter-disciplinary areas, one could choose from three available options, materials science, chemical physics and chemical biology. Of course, other combinations of courses yielding the right mix for chemistry and other disciplines might also be possible. In addition, students are allowed to register for two lab/theory projects during their third and fourth years as an elective course.

A flow chart describing all the available courses under each branch of chemistry and their relationship(s) to the inter-disciplinary areas of research is given below.

Interdisciplinarity in Chemistry

Inter-disciplinary courses are divided roughly into three streams:

1. Chemical Physics: These cover courses in the interface of physics and chemistry and include Symmetry and Group Theory, Advanced Molecular Spectroscopy, Statistical Thermodynamics, Quantum Chemistry and Solid State Chemistry. When combined with suitable physics courses, a student might have a good exposure to both chemistry and physics.
2. Chemical Biology: Several courses in the interface of chemistry and biology are offered by the chemistry division. Starting from the sixth semester, a sequence of courses of Bioorganic Chemistry, Chemical Biology and Medicinal Chemistry can complement relevant course in biology division to cover advanced topics in the interface of these two streams.

3. Materials Science: Courses offered under this broad section would cover areas that are common to chemistry, physics and to some extent biology. Starting from fifth semester a series of courses such as Self-assembly in Chemistry, Solid-state chemistry, Polymer chemistry and Advanced materials chemistry will give good insights to relevant courses both in physics and biology. Further, the courses offered under this section would be useful to all the students who want to specialize in any branch of organic, inorganic or physical chemistry.

Credit System:

4 credits: Typically, there will be three lectures a week. Often instructors devote 2 lectures for theory and 1 lecture for tutorial. In addition, assignments, self-study and group exercises would be part of the course.

3 credits: Typically, there will be two lectures a week. In the senior years, these courses require solid background in the prerequisites mentioned for the course. Advanced laboratory courses are 3 credits with 3 lab hours per week.

2 Credits: Laboratory courses in the first four semesters are two credits each with 3 hours per week.

CHM 101: General Chemistry (3 Credits)

Introduction: This course would be introductory to other major courses in Inorganic, Organic and Physical Chemistry. It would cover the fundamental concepts from the physical, inorganic and organic chemistry branches of chemistry and would be taught in a way to provide link between the 12th grade Science and the undergraduate General Chemistry.

References:
4. The Biological Chemistry of the Elements, F. D. Silva and Williams, Oxford University Press

Prerequisites: None

CHM 102: Physical Chemistry (3 Credits)

Introduction: This course will deal with the basic principles of physical chemistry like thermodynamics, chemical kinetics, kinetic theory of gases and quantum mechanics. The physical chemistry concepts taught in this course will also serve as an important tool to understand reactions and mechanisms in organic, inorganic and biochemistry and principles of spectroscopy. At the end of this course, students should be able to apply these physical chemistry concepts to study various phenomena in physics, chemistry, materials science and biology.

Topics: Chemical kinetics: Basic laws of kinetics, Experimental determination of reaction order and rate, Study of
fast reactions, Simultaneous reactions, Temperature dependence of reaction rate, Mechanism of chemical reactions;

Kinetic Theory of Gases: Maxwell's distribution of molecular velocities, collision in a gas, mean free-path, heat capacity of gases, Equi-partition of energy, viscosity, thermal conductivity, Impact on environmental science and astrophysics; **Thermodynamics:** State and path functions, Internal Energy, Heat and Work, Laws of thermodynamics, Heat Capacity, Enthalpy, Entropy, Gibbs Free energy, Gibbs Helmholtz Equation, Chemical Potential, Colligative properties; **Chemical Bonding & Spectroscopy:** Historical development, Schrödinger equation and Postulates of Quantum Mechanics, Operators in Quantum Mechanics, Particle in a 1 D Box to 3 Dimensional Box, Harmonic Oscillator, Hydrogen atom, Molecular Orbital Theory and Valence Bond Theory, Applications in Spectroscopy.

References:
1. Physical Chemistry by Gordon M. Barrow
2. Physical Chemistry by I. N. Levine
3. Physical Chemistry by P. W. Atkins
4. Quantum Chemistry by Donald A. McQuarrie
5. Quantum Chemistry by I. N. Levine
6. Chemical kinetics by Keith J. Laidler

Prerequisites: None

CHM 121: Physical Chemistry Lab-I (2 Credits)

Introduction: This course is designed to acquaint the students with the practice of experimental physical chemistry. The goal of the labs is to provide modest introductions to the core area of scientific activity which would help the students to apply the principles of thermodynamics, kinetics and spectroscopy presented in the physical chemistry lecture course, in some illustrative experiments. Students are encouraged to understand the interconnection between the experimental foundation and the underlying theoretical principles and appreciate the limitations inherent in both theoretical treatments and experimental measurements. Students will gain familiarity with a variety of measurement techniques which will help them to understand the methods to develop the laboratory skills and the ability to work independently, instil good attitudes and habits towards knowing the safe way of doing science.

Topics: Acid Base Titration using pH meter, Acid Base Titration using conductivity method, Potentiometric titrations, Heat of Neutralization, Kinetic Study of Ester hydrolysis, Activation Parameter calculations, Colligative properties of Solutions, Optical Activity by Polarimetry, UV - VIS Spectrophotometry

References:
2. Physical Chemistry, Peter Atkins, Julio de Paula, Eighth edition

Prerequisites: None

CHM 201: Introductory Chemistry II: Inorganic Chemistry (3 Credits)

Introduction: This course will introduce the students the most rudimentary principles behind the chemistry of inorganic compounds. In this course an overview introduction to the common elements of the periodic table from alkali metals to noble gases through transition-metal and main group elements will be given and their property such as periodicity, structure and bonding, acidity and basicity, redox reactivity etc. will be discussed. At the end of the course, the students should be able to derive the structure of various covalent compounds, apply the concept of acid-base chemistry to various reactions and as a whole understand the importance of the elements of the periodic table for living matter.

Topics: Atomic Structure, electronic configuration, periodicity, sizes of atoms and ions, ionization energy, electron affinity, relativistic effects, chemical bonding, Lewis theory, valence bond and molecular orbital theories, solid state
structures and properties, concepts of acids and bases, Bronsted and Lewis theory, hard and soft acids and bases, oxidation and reduction, electrode potentials, Nernst equation, representation of electrochemical data, importance of water splitting, batteries and fuel cells, coordination complexes, theories of bonding in transition metal compounds, some introduction to main group compounds.

References:

Prerequisites: None

CHM 221: Introductory Chemistry II: Inorganic Chemistry (3 Credits)

Introduction: This laboratory course aims at demonstrating experimentally the concepts that are introduced in the introductory inorganic chemistry course that will run parallel to this lab course. Experiments based on some of the key topics that are introduced in the theory courses such as acids and bases, redox chemistry, chemistry of coordination and main group compounds will be carried out enhancing a further understanding to these topics. Through these experiments the students not only will have a complete knowledge of these topics but also will learn the use of various techniques such as analytical and spectroscopic methods to study them.

Topics: Acid-base titrations relevant to the neutralizing power of antacids, conventional and photochemical synthesis of coordination compounds, complexametric and spectroscopic estimation of metal ion concentrations in coordination compounds, redox titration relevant to the iodine content in common salts, synthesis of disinfectants containing main group compounds such as Alum, soaps and micelles.

References:

Prerequisites: None

CHM 202: Introductory Organic Chemistry

Introduction: This course includes structural chemistry of organic compounds with an emphasis on electronic structure, reactivity, conformation and stereochemistry. These concepts will prepare students for a mechanistic-based approach to learning organic reactivity. Emphasis will be given towards developing problem-solving skills unique to organic chemistry.

Topics: Carbon compounds and chemical bonding, Reactive Intermediates; Carbocations and Carbanions chemistry, Free radicals and Carbenes, Acidity, basicity, and pKa, Acidity, The definition of pKa, Basicity, Factors that influence the acidity and basicity, HSAB Principle, Stereochemistry: R and S descriptors, Axis of Chirality; E and Z system; erythro, threo; Helical descriptors- M and P, cis, trans, Conformational analysis of ethane and cyclohexane, Addition Reactions: Nucleophilic addition reaction to the neutralizing power of antacids; conventional and photochemical synthesis of coordination compounds, complexametric and spectroscopic estimation of metal ion concentrations in coordination compounds, redox titration relevant to the iodine content in common salts, synthesis of disinfectants containing main group compounds such as Alum, soaps and micelles.

References:

Prerequisites: None
CHM 222: Organic Chemistry Lab (2 credits)

Introduction: This laboratory course will provide opportunity for the students to learn the nuances in organic synthesis. Students will be trained to setup reactions, monitor reactions by functional group analysis and by thin layer chromatography. In this course, students will learn basic separation and purification techniques (e.g., filtration, recrystallization and column chromatography) that are commonly used in organic synthesis. Students will be also trained in isolating natural products from natural sources. Furthermore, students will characterize the synthesized or isolated compounds by determining the melting point or by IR, UV and NMR spectroscopy. Together this organic chemistry lab course will set a platform for students who wish to pursue research in experimental chemistry.

Topics: Functional group analysis, classical name reactions and oxidation, reduction, cycloaddition, aromatic electrophilic substitution reactions, isolation of natural products and synthesis of fluorescent compounds, purification techniques such as recrystallization and column chromatography.

Prerequisite: None

References

2. Organic Chemistry by Solomons, John Wiley & Sons Inc; 2nd or 3rd edition

CHM 311: Physical Organic Chemistry (4 Credits)

Introduction: The main objective of this course is to expose students to the fundamental concepts of structure and function in organic reactions. The use of kinetics and thermodynamics to elucidate mechanisms of reactions will be dealt with. At the end of this course, students will be in a position to predict reactivity patterns and propose reasonable mechanisms.

Topics: Basic concepts of acidity, basicity, and pKa; Equilibria, kinetics and mechanisms; Rearrangements; Radical Reactions; Mechanisms in Biological Chemistry; Advanced Molecular Orbital Theory; Stereochemistry and conformational analysis; Thermal pericyclic reactions; Sigmatropic and electrocyclic reactions; Synthesis and Reactions of carbenes.

References:

Prerequisites: None, but this course is prerequisite for Organic Synthesis I and II.

CHM 312: Main group chemistry (4 Credits)

Introduction: The objective of this course is to focus on the chemistry of main group elements such as hydrogen, alkali metals and P-block elements from group 13 – 18 of the periodic table. The central theme of this course is to give a detailed account on the fundamental concepts relevant to structure and bonding, acids and bases, redox behavior, reactions and applications of the main group elements and their compounds. In addition to providing a necessary foundation for inorganic chemistry, this course will also emphasize the role of main group compounds in multi disciplinary areas of chemistry such as supramolecular, organometallic, materials science and catalysis.

Topics: Theories of bonding, acids and bases, thermodynamic acidity parameters; hydrogen and classical hydrogen bond, water, hydrates, hydrogen ions, metal hydrides, activation of hydrogen complexes; alkali metals in liquid
ammonia; boron, boranes, carboranes, borazines and borates; allotropy of carbon; silane and polysilanes, silicone Polymers, silicates; compounds of nitrogen, activation of nitrogen, nitrogen fixation, hydrogen, halogen, oxygen and nitrogen compounds of phosphorous; oxygen and singlet oxygen, ozone, complexes of molecular oxygen; N-S compounds; sulphides, oxides and oxoacids of sulphur, chalcogenides and polychalcogenides; halogens, polyhalides, interhalogen compounds, charge-transfer complexes of Halogens; Compounds of Xenon and other noble gases; Zintl compounds and homometallic clusters; elemental and compound semiconductors; energy, polarity, and reactivity of M-C bond; organometallic chemistry of the main group elements.

References:
2. Chemistry of the Elements by Greenwood and Earnshaw (2nd ed.)

Prerequisites: None

CHM 320: Symmetry and Group Theory (4 credits)

Introduction: The objective of this course is to recognize symmetry in molecules and understand its role in chemistry. The course will explore the role of symmetry in (A) determining molecular properties like optical activity and dipole moment (B) classifying and assigning nomenclature to molecules, molecular states and molecular motions, (C) bringing about simplifications in the application of quantum mechanics to molecules and (D) determining spectroscopic selection rules based on molecular symmetry. Group theory applied to the study of molecular symmetry has far reaching consequences in chemistry and the course will provide an in-depth appreciation of this.

Topics: Symmetry elements and operations, Schönflies notation of point group, prediction of dipole moment and optical activity from the viewpoint of symmetry, definition of group, subgroup and class, matrix representation of a point group, reducible and irreducible representations, great orthogonality theorem and its corollaries, construction of character tables and meaning of all the terms in a character table, Mulliken symbols for irreducible representations, direct product of irreducible representations, application of symmetry to quantum mechanics, application of symmetry to spectroscopy – electronic, IR and Raman selection rules, projection operator and its application to symmetry adapted linear combinations, construction of molecular orbital correlation diagram of simple and complex molecules, Hückel π molecular orbital of a conjugated system.

References:
3. Symmetry and Spectroscopy: D. C. Harris and M. D. Bertolucci (Dover)
4. Group Theory and Quantum Mechanics: Michael Tinkham (Dover)

Prerequisites: None. Strongly recommended for students planning to take Quantum Chemistry and Molecular Spectroscopy

CHM-331: Self-assembly in Chemistry (3 Credits)

Introduction: This chemistry course is aimed to provide fundamental aspects of self-assembly in chemistry and its application for supramolecular architectures. This course is beneficial for students who are interested in molecular materials, nanomaterials, biology-chemistry interface and self-assembly in chemical and biological systems. The course also consists of student’s seminars on selected topics, problem solving, and idea generation and laboratory experiments on making and testing of self-assembled objects.

Topics: Introduction to self-assembly and supramolecular chemistry, types of non-covalent interactions, importance
of pre-organization, determination of association, problem solving, metal ion-macro-ligand supramolecular structures and metallo-supramolecular polymers. Single & self-complementary system, two, three and four and multiple arm hydrogen bonding systems, switching of recognition functions, hydrogen bonded supramolecular polymers, etc. Guest-host approaches in cyclodextrins, Calixarenes, Molecular rings & Nots, Rotaxanes and Dendrimers with examples. Anionic, cationic and neutral Micelles, critical micelle concentration (CMC) determination, bolaamphiphiles and application of micelles in drug delivery, etc. Origin of liquid crystals, mesogens self-organization, Types: nematic, smectic and cholesteric liquid crystals and characterization of LC-materials. Self-assembly in DNA, protein and peptides.

References
1. Selected Topic covered in Comprehensive Supramolecular chemistry, Volume-8
2. Core concepts in Supramolecular chemistry and Nano-chemistry: Authors; J. W. Steed
4. Introduction to Soft matter: Synthetic and Biological Self-Assembling Materials: Authors: Ian W. Hamley
5. Review and research articles, communications and notes published in international journals (will be provided).

CHM332: Separation principles and Techniques (3 Credits)

Introduction: Separation plays a crucial role in Chemistry and Biology, where sample purity is of utmost importance e.g. Pharmaceuticals, Biopharmaceuticals and Fragrances etc. In this course, we will learn theory and practice of separation. We will have hands on training on HPLC, GC, GC MS, Centrifugation, Electrophoresis and few other Chromatographic techniques.

Topics: Thermodynamics, diffusion rates, mass transfer etc. Solvent extraction, distillations, liquid-liquid extraction and other methods of separation. Types of Chromatography: GC, HPLC, hyphenated techniques. Electrophoresis, centrifugation DNA/Protein separations / purifications. Green Separation process separation using zeolite and polymer membranes. Chiral separations, molecular recognition, molecule imprinting and polymer separations.

References:
1. An Introduction to Separation Science: B.L. Karger; L.R. Snyder and C. Horvath.

Prerequisites: None

CHM340: Advanced Organic Chemistry Lab

Introduction: This laboratory course will provide reasonable opportunity for the students to learn the nuances in organic synthesis. Classical name reactions, rearrangements and multi-step reactions will be performed in this course. Purification techniques such as column chromatography will be also included. Synthesized compounds will be characterized using IR, UV, NMR and Mass spectrometer. Put together this organic chemistry lab course will set a platform for students who wish to pursue research in experimental chemistry.

Topics: Separation of ternary quantitative analysis of organic compounds. Electrophilic aromatic substitution reactions: Synthesis of methyl orange (organic dye); Name reactions and rearrangements: Wittig reaction, Beckmann rearrangement: Acetanilide from Acetophenone Oxime; Multi step synthesis: Synthesis of substituted Flavones and characterization of the diketo intermediates and flavones derivatives; Photochemical reaction: Photochemical reaction: Synthesis of benzopinacol from benzophenone using sunlight; Thermal pericyclic reactions: Diels alder reaction: anthracene and maleic anhydride; Cupper(I) mediated cycloaddition reaction: Click reaction: Azide and alkyne coupling reaction; Organometallic reactions: Palladium catalyzed cross-coupling reaction: Stereochemistry: Addition of Bromine to trans-cinnamic acid.
References
1. Experimental procedures will be provided from current literature.

CHM 310: Quantum Chemistry (4 credits)

Introduction: The objective of this course is to understand the fundamental principles of quantum mechanics as applied to molecular model systems and molecules. Students taking the course will get an understanding of the theoretical principles underlying molecular structure, bonding and properties. The concepts discussed in this course will be useful to the students who wish to pursue research in areas of theoretical and computational chemistry, spectroscopy, molecular biology and materials science. The course will start with a discussion of the Schrödinger equation and exact solutions to various one-body problems followed by approximate methods to solve the many-body electronic problem.

Topics: Introduction to quantum mechanics, wave equation and Schrodinger equation, postulates of quantum mechanics, particle in a box, harmonic oscillator, rigid rotor, hydrogen atom, variational principle, perturbation theory, introduction to many electron systems, electron spin, antisymmetry, Slater determinants, 2-e system, Valence Bond theory, Molecular Orbital theory, Hückel theory, Hartree-Fock theory, post Hartree-Fock methods.

References:
1. Quantum Chemistry by Donald A. McQuarrie
2. Modern Quantum Chemistry Attila Szabo and Neil Ostlund
3. Quantum Chemistry by Ira N. Levine

Prerequisites: None

CHM 321: Organic Synthesis-I (4 Credits)

Introduction: This course primarily deals with various strategies involved in logical organic synthesis by incorporating basic organic transformations, reactions, and reactivity. Various functional group transformations, reagents, and reaction mechanisms, will be discussed to provide students a clear understanding and importance of organic synthesis. This course should serve as a stepping stone for students looking to progress to more advanced synthetic concepts and methodologies.

References:

Prerequisite: CHM 311: Physical Organic Chemistry

CHM 322: Transition Metal Chemistry (4 Credits)

Introduction: The objective of this course is to provide a detailed account to the chemistry of transition metals and emphasize their relationship to other multi-disciplinary topics such as bioinorganic chemistry and organometallic
chemistry. The central theme of this course is to focus on the fundamental concepts needed to understand the transition metal chemistry relevant to their structure, bonding, properties such as spectral characteristics, reactivity, stereochemistry etc. This course will be useful to all those students who have opted for chemistry as a major subject. At the end of this course, students will also learn about the role of transition metals in several other fields like materials science, biology and catalysis.

Topics: Crystal and ligand field theories, crystal field stabilization energies, Irving-Williams series, 10Dq and pairing energies, molecular orbital diagrams for coordination complexes, magnetic susceptibilities and Jahn-Teller effects. Spectroscopic terms, LS-coupling scheme, ligand field transitions, charge transfer bands, selection rules, Orgel diagrams, Tanabe-Sugano diagrams and circular dichroism. Thermodynamic and kinetic factors, labile and inert complexes, ligand substitutions in octahedral and square planar complexes, stereo chemical effects. Oxidation/reduction potentials, Nernst equation and redox stability in water, complementary and non-complementary redox reactions, Inner and outer sphere electron transfer and Marcus theory, electron transfer in metalloprotiens. Basic terminologies, kinetic factors affecting quantum yield, photochemistry of Co, Rh, Cr and Ru.

References:

Prerequisites: NIL

CHM 323: Fundamentals of Spectroscopy (4 Credits)

Introduction: The objective of this course is to teach the fundamentals of major branches of Spectroscopy and its applications. Spectroscopy is an important research tool in all areas of science (Chemistry, Physics and Biology) to determine the structures of molecules. In principle, the interaction of light with matter provides a great deal of physical information about a system of interest and ultimately defines many of the observational techniques used. In this course, this radiation-matter interaction and the quantitative information it can provide about molecular systems will be examined.

References:
1. Introduction to Molecular Spectroscopy: G. M. Barrow, McGraw-Hill
3. Modern spectroscopy, J. M. Hollas (Wiley, New York)
5. Physical Chemistry: A Molecular Approach; Donald A. McQuarrie and John D. Simon, Viva Books Private Limited

Prerequisite: NIL

CHM 334: Physical Chemistry of Solutions (3 Credits)

Introduction: This course is designed to teach elementary physical chemistry of solutions to have an insight on the thermodynamic treatment of the chemical problems. Special emphasis will be given to the study of stability in macroscopic systems undergoing phase change and rigorous calculations of equilibrium properties of solutions will be undertaken. Numerical problems related to equilibrium properties, colligative properties, transport properties, conductivity, mobility, viscosity etc. will be taken care to have hands on experiences. Apart from the familiarity with the routine thermodynamic calculations of chemical systems, students would be exposed to contemporary areas such as
CHM351: Bioorganic Chemistry (3 Credits)

Introduction: This course is intended to provide a basic knowledge on the biosynthesis of biomolecule precursors and natural products. The content of this course is a chemistry-based approach to understanding the basic structure, reactivity, biological functions and biosynthesis of precursors—amino acids, nucleotides, fatty acids, lipids and secondary metabolites. This course is also a preamble for Chemical biology course offered in the 8th semester.

Topics:
- Overview of basic structure of carbohydrates, nucleic acids, proteins, and lipids, Primary and secondary metabolism, bioenergetics, biological and organic reaction mechanisms, coenzymes and cofactors, amino acids: biosynthesis of amino acids promoted by pyridoxal phosphate, Shikimic acid pathway to aromatic amino acids, peptides, depsipeptides antibiotics and their biological activities, biosynthesis of nucleosides, beta-oxidation of fatty acids, biosynthesis of fatty acids, various lipids, polyketides, prostanoids, leucotrienes and other secondary metabolites, metabolites of mixed biosynthetic origin, from acetate, mevalonate and shikimate pathway, isoprenoids: isoprene unit, monoterpenes, diterpenes, sesquiterpenes and triterpenes, and biological activities, steroids: steroidogenesis, biosynthesis and biological implications.

References:
2. Biochemistry, Voet and Voet, 3rd edition
3. Physical Chemistry by P.W. Atkins and Julia de Paula, eighth edition

Pre requisites: Essentials of Physical Chemistry covered during 1st and 2nd semester

CHM360: Advanced Inorganic Chemistry Lab (3 Credits)

Introduction: This course aims at the integration of chemical synthesis and spectral characterization techniques. Reactions studied in lectures would be explored in laboratory conditions to rationalize synthesis and structural aspects of inorganic molecules and coordination complexes. In this process, students will be encouraged to use advanced instrumentation such as IR and UV-Vis spectrophotometers apart from advanced technique such as multi-nuclear NMR spectroscopy.

Topics: Spectrochemical studies for analysis and stoichiometry, redox reactions. Synthesis, characterization, spectral and magnetic properties of metal co-ordination complexes having different oxidation numbers; determination of their spin-only magnetic moments, Determination of halide concentration by non-spectroscopic methods. Synthesis and
evaluation of properties for a silicon polymer, Optical properties of coordination complex. Single crystal-growth and X-ray crystal structural determination.

References:
1. Experimental procedures will be provided from current literature.
3. Vogel’s Qualitative Inorganic Analysis, 7th Edition, Revised by G. Svehla, Publisher: Prentice Hall

Prerequisite: None

CHM 410 Advanced Molecular Spectroscopy (4 Credits)

Introduction: The modern avatar of spectroscopy is a highly interdisciplinary one. Applications are in subjects as diverse as Chemistry, Physics, Astronomy, Material science and Biology. The developments in spectroscopy now span from ultrafast time-scales to micro and millisecond regimes and a wide range of spatial length scales. The objective of this course is to teach spectroscopy at the advanced level and familiarize the students with the capabilities of these advanced tools. The students will learn fundamentals of laser operation, different types of laser systems, optical techniques that use lasers and various advanced spectroscopic techniques. The students will get practical training in analysis of spectral data. Modern research topics relevant to this course will be provided to the students and they will make a presentation on that topic at the end of the semester. This course will be useful for those who would like to use advanced spectroscopic techniques in their research.

Topics: Introduction to interaction of radiation with matter, Fundamentals of lasers and laser systems, Advanced spectroscopic techniques and applications, e.g., Raman spectroscopy, Electronic spectroscopy, Fluorescence techniques, Cavity ringdown absorption spectroscopy, Supersonic jet spectroscopy, Laser induced fluorescence, Stimulated emission pumping, Multiphoton ionization spectroscopy, Photoelectron spectroscopy, Ultrafast spectroscopy.

References:
1. Modern spectroscopy, J. M. Hollas (Wiley, New York)
5. Physical Chemistry - A Molecular Approach; Donald A. McQuarrie and John D. Simon, Viva Books Private Limited

Prerequisites: CHM 323: Fundamentals of Spectroscopy

CHM 411: Organic Synthesis-II (4 Credits)

Introduction: Builds enough knowledge for independent planning of the total synthesis of an organic molecule. This course would develop research skills and critical thinking by application of course content to practical problem solving. In addition, the course introduces student to variety of strategies in which a molecule can be conceived depending on the intuition of the student. Total synthesis of several molecules from the literature will be discussed in detail which gives students firm understanding of the facts for planning their own synthesis endeavours.

Topics: Formation of carbon-carbon single bonds, Organometallic reagents, synthesis of carbocyclic systems, sketches of synthesis, tactics in organic synthon approach, disconnection approach for multiple step syntheses, functional group interconversions, synthesis of heterocycles: ring-closing reactions; asymmetric synthesis, chiral pool synthesis, chiral auxiliary, organocatalysis, Desymmetrisation, total synthesis of natural products.

References:
4. *Classics in Total Synthesis* by K C Nicolaou & Sorensen
6. Other course material given time to time from literature.

Prerequisites: Organic Synthesis-I (CHM321)

CHM 413: Bioinorganic Chemistry (4 Credits)

Introduction: This course will explore the inorganic chemistry behind the requirement of biological cells for metals such as zinc, iron, copper, manganese, and molybdenum. The course comprises of principles of coordination chemistry and spectroscopy topics such as EPR and Mossbauer for metal ions. The reactivity of coordination complexes of metal ions will be discussed in the context of the reaction mechanisms of specific metalloenzymes. A portion of the course will be devoted to the toxicity of metals and also their utility in drugs and in diagnostic agents.

References:
1. *Bioinorganic Chemistry*, Bertini, Gray, Lippard and Valentine, Viva Books
2. *Biological Inorganic Chemistry*, Bertini, Gray, Stiefel, Valentino, University Science Books
3. *The Biological Chemistry of the Element*, F. D. Silva and Williams, Oxford University Press

Prerequisites: CHM 322: Transition Metal chemistry

CHM 430: Advanced Physical Chemistry Laboratory (3 credits)

Introduction: This course offers a mix of experimental and computational experiments based on the physical concepts in chemistry. Experiments offered in this course provide students an opportunity to learn advanced instrumentation techniques as well as its application to study a variety of chemical problems. The computational experiments are based on the theoretical principles taught in quantum chemistry and symmetry and group theory. The computational experiments are designed to show how computations can be used to predict, complement and validate experimental results.

Topics: Building of molecules using Gaussview: Calculation of energy, structure and vibrational frequencies using Gaussian software, Visualization of geometry, orbitals, vibrations and spectra using Gaussian software, Contact angle measurement on hydrophobic and hydrophilic surface, Synthesis and spectroscopic characterization of metallic nanostructures, Raman spectroscopic studies of CCl4, Lithographic patterning, Study of an oscillatory reaction by Emf, or (and) absorbance measurement, To study the fluorescence quenching of Anthracene by CCl4 in n-hexane or (and) ethanol.

References:
1. *Experimental Physical Chemistry* by V.D. Athawale, Parul Mathur; New Age International Publisher.
3. Gaussian 03/09 User manual

Prerequisites: None

CHM 431: Chemical Biology (3 Credits)

Introduction: Chemical biology is a discipline that integrates principles and experimental techniques drawn from both chemistry and biology to understand biological phenomena. This course will use topics from the current literature to
provide an overview of Chemical Biology and will demonstrate the integration of chemical, biochemical and biological approaches. Also, this course will cover the use of modern instrumentation for studying various aspects of biological systems, including structure, dynamics and functions. The course structure will empower both chemists and biologists by providing chemists with relevant new biological targets and biologists with useful new chemical tools.

Topics: Chemical and enzymatic modification of nucleic acids, solid-phase peptide synthesis, unnatural amino acids and their incorporation. Biomolecular interactions: protein-nucleic acid, protein-small molecule, nucleic acid-small molecule and sugar-protein. Combinatorial approaches to drug discovery, high-throughput screening, chemical glycomics and various biophysical techniques.

References:
This course will use topics from the current literature, and appropriate reference information will be provided to the students.

Prerequisite: None

CHM 432: Solid State Chemistry (3 Credits)

Introduction: This course is designed to provide the fundamental knowledge of the crystallography, structure and properties. The objective of this course is to lay the foundation for understanding the relationship between the internal structure of matter and the properties of materials that make them attractive for applications. Apart from the familiarity with the routine structure – property correlations, students would be exposed to some of the most recent developments across the spectrum of Solid – State and materials, while at the same time reflecting on key turning points in the evolution of this scientific interdisciplinary course and projecting the knowledge into the directions for future research progress.

Topics: Crystal Structure, Fundamentals of lattice, unit cell, atomic coordinate, Bravais Lattices, Crystal's direction and planes, Symmetry operations, symmetry elements, Point Group, Space group, Crystal Structures, Representation of Crystal Structures, Crystal Diffraction, lattice Vibrations, Electronic Properties and Band theory of solids, metals, insulators and semiconductors, Electronic structure of solids-bond theory, k space and Brillouin zones, Magnetic Properties, Magnetic moment, Curie law, Curie-Weiss law, Mechanism of magnetic ordering, Exchange Interaction, Domain theory, Hysteresis, Anisotropy, Ferromagnetism, Ferrimagnetism, Antiferromagnetism, Classical and Quantum mechanical treatment, Dielectric and Optical Properties, Polarization, Depolarization field, Local electric filed at an atom, Ferroelectric domains, Piezoelectricity, Ferroelectricity, Selected examples of materials, structures, properties and applications with respect to structure/property relations, Recent developments, Thermal Analysis, Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry, Materials processing and Performances.

References:
2. Solid State Chemistry and its applications by A. R. West, John Wiley & Sons, Ltd.
4. Introduction to Solid State Physics by Charles Kittel; John Wiley and Sons

Pre requisites: Essentials of Physical and Inorganic Chemistry covered during 1st and 2nd semester.
CHM 436: Molecular Modeling and Simulation (3 Credits)

Introduction: This course will introduce theoretical concepts and computer based experiments on Molecular Dynamics simulations and quantum mechanical methods. A strong background in mathematics and physics is recommended for students of this course. Students with research interest in theoretical and computational chemistry/physics are expected to benefit from this course.

References:

Pre-requisites: None

CHM 420: Structural Methods and Analysis (4 Credits)

Introduction: The objective of the course is to develop the foundation for important characterization methods (spectroscopic and analytical methods) used routinely by organic/inorganic/physical chemists. Understanding of principles followed by problem solving sessions involving discussions of spectral data of known and unknown compounds is expected to develop critical thinking and problem solving skills. The course is also important for biology students who want to pursue their research in the chemical biology.

References:

Prerequisites: None

CHM 421: Polymer Chemistry (4 Credits)

Introduction: This course's emphasis is to provide fundamental knowledge in polymer science. This course is very important for all the students who wish to learn and practice macromolecular and organic chemistry. New physical chemistry concepts in macromolecules, organic synthetic methodologies for polymers and applications of polymers in the industrial applications will be focused. This course is beneficial for students who are interested in polymeric materials, nanomaterials, biology-chemistry interface and macromolecular assemblies in chemical and biological systems.

References
2. Text Book of Polymer Science, Billmeyer Jr., Wiley
4. Review and research articles, communications and notes published in international journals (will be provided)

Prerequisites: None

CHM 422: Statistical Thermodynamics (4 Credits)

Introduction: Statistical thermodynamics provides a measure to understand classical thermodynamics (energy, entropy, free energy etc.) from microscopic motion of atoms (position, velocity). Therefore, this course provides the tools to explain certain phenomena that are governed by classical thermodynamics (e.g., free energy) from a molecular point of view. The basis of molecular dynamics simulation, which covers a complete research area, is based on statistical thermodynamics. The course requires basic knowledge of mathematics and the concept of probability. This course is essential for a physical chemistry student. However, the knowledge in general will help other branches as well, especially those who would like to think in terms of atoms and molecules. This course will be eventually helpful to pursue a theoretical/computational research.

Reference:
2. Statistical Mechanics, Donald A McQuarrie, University Science Books, California, USA, Viva Books Private Limited, New Delhi (Indian Edn) [First 7 chapters and some other chapters]

Prerequisite: Basic mathematics

CHM 433: Photochemistry (3 Credits)

Introduction: This course will give idea to students how light can take a major role in many natural and chemical processes. Here the students will also get thorough knowledge about excited state processes (e.g. fluorescence, phosphorescence etc.) and the importance of the above mentioned processes in all fields of science.

Topics: The laws of photochemistry, Primary processes in photochemical reactions, Fluorescence and phosphorescence, Concept of quantum yield, lifetime, anisotropy, Techniques used in measuring fluorescence lifetime, Quenching phenomenon, Electron Transfer Reaction & Marcus Theory, Fluorescence resonance energy transfer (FRET), Concept of Excimer and exciplex, Diffusion controlled rate constants, Flash photolysis, Some typical photochemical reactions: Olefin isomerization, Retinal and Rhodopsin photochemistry of vision, Acid-base
chemistry, Reversal of pericyclic selection rules, Woodward-Hoffman rules of electrocyclic reactions, photocycloaddition reactions, UV-DNA damage, breaking aromaticity, Di-II methane rearrangement, oxadi-II-methane rearrangement, Photochemistry of carbonyl compounds, Norrish type I and Norrish type II reactions, Nitrobenzyl photochemistry, Paterno-Buchi reaction, azo compound and diazocompounds, diazirins, azides and photoaffinity labeling, Chemiluminescence and Chemiluminescent reactions, light sticks, photodynamic therapy, photochemistry of transition metal complexes and photosynthesis.

References:
1. Modern Molecular Photochemistry by Nicholas J. Turro
2. Principles of Fluorescence Spectroscopy by J. R. Lakowicz
3. Handbook of Photochemistry by Marco Montalti, Alberto Credi, M. Teresa Gandolfi
5. Synthetic Organic Photochemistry by A. G. Griesbeck

Prerequisite: Fundamentals of Spectroscopy (CHM202)/Molecular Spectroscopy

CHM 434: Medicinal Chemistry (4 Credits)

Introduction: This course is intended to provide insights into applications of organic chemistry in the field of drug discovery and development. In this course, approaches to new drug discovery including natural product isolation, high-throughput synthesis and screening, and rational drug design will be discussed. We will also compare and contrast these methods of drug discovery and development. We will also learn approaches to lead identification followed by structure-activity determination for optimization of a drug’s activity. Some modern methods of drug delivery including formulations and prodruk approaches will be briefly discussed. Finally, we will present a brief introduction to pharmacology, target identification, pre-clinical and clinical development of a drug candidate.

Topics: Enzyme structure and catalysis, types of inhibitors, inhibitors as the basis for drug design, receptors, drug-receptor interactions, ion channels, natural products with drug-like activity, DNA damaging and intercalating agents, RNA-based methods, drug metabolism, biodistribution, drug delivery methods, prodrugs.

References:
1. An Introduction to Medicinal Chemistry, Graham Patrick, Oxford University Press, USA; 3rd or 4th edition

Prerequisite: None

CHM 441: Advanced Materials Science (3 Credits)

Introduction: This course would be in two parts. Whist the first part would give an overview of Materials and discuss the structure-property relationships in materials from fundamental perspectives. The second part would introduce you to practical methods and techniques of investigating the properties of these materials for energy applications. Throughout the course there would be sufficient references to state-of-the-art materials and prototypes.

Nanotubes, Fullerenes, Graphenes as Advanced Functional Materials.

References:

Prerequisites: CHM-320: Symmetry and Group Theory and CHM-432: Solid State Chemistry

CHM 442: Organometallic Chemistry: Principles and Applications (3 Credits)

Introduction: The main goal of this course is to help the students to learn the principles of organometallic chemistry with emphasis to the understanding of their structure, properties and applications. Organometallic chemistry has served as a bridge between traditional inorganic and organic chemistry and contributed to the development of several important discoveries in synthetic organic chemistry. At the end of this course students will have a thorough understanding of the classification and mechanistic aspects of several organometallic reactions and will be able to identify the role of organometallic complexes in organic synthesis and industrial applications. This course will be also useful to Ph.D students working in the area of organic and inorganic chemistry.

References:
1. Ch. Elschenbroich, A. Salzer, Organometallics; 2nd Ed. VCH, 1995

Prerequisite: None

CHM 301/302/401/402: Lab/Theory Project (3 Credits)

Introduction: The larger objective of this course is to encourage students to participate in ongoing research at IISER. This may be in the form of a reading/literature review/theoretical or computational project/lab based research project.

Topics: The student has to identify, talk to and mutually agree on a research project before registering for this course. The scope, duration, structure, expectations, and evaluation criteria (also see below) for the course are decided by the project supervisor.

References: As per suggestions of the project supervisor.
1. The course is open to Int. B.S./M.S. students in the 5-8th semesters.
2. CGPA \(\geq 6.5 \) till the previous semester.
3. Project can be carried out only in IISER.
4. Requires prior permission of the faculty concerned.

Prerequisite: NIL
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the Course</th>
<th>Students</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS-MS</td>
<td>Fall Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 310</td>
<td>Quantum Chemistry</td>
<td>BS-MS</td>
<td>9</td>
<td></td>
<td>31</td>
<td>22</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 311</td>
<td>Physical Organic Chemistry</td>
<td>BS-MS</td>
<td>17</td>
<td></td>
<td>11</td>
<td>16</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 312</td>
<td>Main Group Chemistry</td>
<td>BS-MS</td>
<td>10</td>
<td></td>
<td>11</td>
<td>15</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 330</td>
<td>Advanced Organic Chemistry Lab</td>
<td>BS-MS</td>
<td>8</td>
<td></td>
<td>8</td>
<td>26</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 331</td>
<td>Self-assembly in Chemistry</td>
<td>BS-MS</td>
<td>10</td>
<td></td>
<td>18</td>
<td>16</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 332</td>
<td>Separation Principles & Techniques</td>
<td>BS-MS</td>
<td>15</td>
<td></td>
<td>12</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 320</td>
<td>Symmetry and Group Theory</td>
<td>BS-MS</td>
<td>14</td>
<td></td>
<td>21</td>
<td>48</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 321</td>
<td>Organic Synthesis I</td>
<td>BS-MS</td>
<td>14</td>
<td></td>
<td>8</td>
<td>13</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 322</td>
<td>Transition Metal Chemistry</td>
<td>BS-MS</td>
<td>12</td>
<td></td>
<td>14</td>
<td>20</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of students opting the course in each semester
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the Course</th>
<th>Students</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 333</td>
<td>Electro Chemistry</td>
<td>BS-MS</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 333</td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 333</td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 350</td>
<td>Advanced Physical Chem.</td>
<td>BS-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 350</td>
<td>Practical-II</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 350</td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 350</td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 351</td>
<td>Bioorganic Chemistry</td>
<td>BS-MS</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>CHM 351</td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 351</td>
<td>Ph.D.</td>
<td></td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHM 333</td>
<td>Physical Chemistry of Solution</td>
<td>BS-MS</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>33</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>CHM 333</td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHM 334</td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 360</td>
<td>Advanced Inorganic Chem. Lab</td>
<td>BS-MS</td>
<td>12</td>
<td>25</td>
<td>18</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 360</td>
<td>Int. Ph.D.</td>
<td></td>
<td>6</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 330</td>
<td>Advanced Organic Chem. Lab</td>
<td>BS-MS</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>13</td>
<td>23</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CHM 330</td>
<td>Int. Ph.D.</td>
<td></td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 330</td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 410</td>
<td>Adv. Molecular Spectroscopy</td>
<td>BS-MS</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>35</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>CHM 410</td>
<td>Int. Ph.D.</td>
<td></td>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 410</td>
<td>Ph.D.</td>
<td></td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CHM 411</td>
<td>Organic Synthesis II</td>
<td>BS-MS</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>23</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>CHM 411</td>
<td>Int. Ph.D.</td>
<td></td>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 411</td>
<td>Ph.D.</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 412</td>
<td>Adv. Inorganic Chemistry</td>
<td>BS-MS</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 412</td>
<td>Int. Ph.D.</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 412</td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 430</td>
<td>Advanced Physical Chem. Lab</td>
<td>BS-MS</td>
<td>12*</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>33</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>CHM 430</td>
<td>Int. Ph.D.</td>
<td></td>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 430</td>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Name of the Course</td>
<td>Students</td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>CHM 431</td>
<td>Chemical Biology</td>
<td>BS-MS</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>21</td>
<td>10</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CHM 432</td>
<td>Solid State Chemistry</td>
<td>BS-MS</td>
<td>11</td>
<td>9</td>
<td>14</td>
<td>23</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 420</td>
<td>Structural Methods & Analysis</td>
<td>BS-MS</td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 421</td>
<td>Polymer Chemistry</td>
<td>BS-MS</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>50</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 422</td>
<td>Statistical Thermodynamics</td>
<td>BS-MS</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 423</td>
<td>Medicinal Chemistry</td>
<td>BS-MS</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>24</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 433</td>
<td>Photochemistry</td>
<td>BS-MS</td>
<td>13</td>
<td>9</td>
<td>10</td>
<td>37</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 435</td>
<td>Bio-inorganic Chemistry</td>
<td>BS-MS</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 436</td>
<td>Molecular Modeling & Simulation</td>
<td>BS-MS</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 442</td>
<td>Organometallic Chemistry</td>
<td>BS-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 413</td>
<td>Bio-inorganic Chemistry</td>
<td>BS-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int. Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the Student</td>
<td>Thesis Title</td>
<td>Thesis Supervisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Haritha Rao</td>
<td>Synthesis and enzymatic incorporation of an azide-modified uridine triphosphate analogue</td>
<td>Dr. S. Srivatsan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kumar Saurav</td>
<td>Synthesis of gamma-ammino beta-keto esters and the study of biomolecular interactions using ITC</td>
<td>Dr. H. N. Gopi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Harpreet Singh</td>
<td>Banana and star shaped liquid crystalline oligo-(phenylenevinylene)s</td>
<td>Dr. M. Jayakannan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Prakhar Arora</td>
<td>Synthesis & characterization of macrocycles based on thiophenes subunits chemistry</td>
<td>Dr. V. G. Anand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vedant Pande</td>
<td>Investigation of non-covalent interactions in mixed clusters of heterocyclic aromatic compounds: A supersonic jet study combined with quantum chemistry calculations</td>
<td>Dr. Aloke Das</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D. Pravarthana</td>
<td>Multifunctional magnetic nanoparticles for biomedical applications</td>
<td>Dr. Seema Verma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Shishir Suresh Chourey</td>
<td>Design and synthesis of JNK1 allosteric inhibitors</td>
<td>Lupin Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rakesh Gaur</td>
<td>Synthesis of thiophene based macrocycle and metal dipyrrins</td>
<td>Dr. V. G. Anand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ashutosh Priyadarshi</td>
<td>Design towards the synthesis and evaluation of naphthalenediimide based anion sensors</td>
<td>Dr. Pinaki Talukdar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hutashan Vajpeyi</td>
<td>Study of water dynamics in the DNA-daunomycin intercalation pathway</td>
<td>Dr. Arnb Mukherjee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Varun Kumar Rishi</td>
<td>Ab initio quantum chemical study of selenium dioxide mediated allylic hydroxylation of alkenes</td>
<td>Dr. Sudip Roy (NCL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MS Thesis-2012

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Student</th>
<th>Thesis Title</th>
<th>Thesis Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sandeep Gupta</td>
<td>Bitumen: Chemical composition and rheological behaviour</td>
<td>Shell, Bangalore</td>
</tr>
<tr>
<td>2</td>
<td>Dharmraj Robins Chourasia</td>
<td>Analysis of product patents in pharmaceuticals for mailbox applications granted by Indian patent office during 2005-06 to 2009-10</td>
<td>Dr. Raj Hirwani (URDIP, Pune)</td>
</tr>
<tr>
<td>3</td>
<td>Rohit Kumar</td>
<td>A density functional theory study of structure, stability and reactivity of Clathrate hydrates</td>
<td>Dr. Arun Venkatnathan</td>
</tr>
<tr>
<td>4</td>
<td>Neha Agrawal</td>
<td>Synthesis and characterization of hybrid peptides containing gamma- and vinylogous amino acids</td>
<td>Dr. H. N. Gopi</td>
</tr>
</tbody>
</table>

Project done during the 5th year of BS-MS Programme
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Student</th>
<th>Thesis Title</th>
<th>Thesis Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Anuj Bisht</td>
<td>Development of conducting polyaniline-gold nanocomposites</td>
<td>Dr. M. Jayakannan</td>
</tr>
<tr>
<td>6</td>
<td>Amitosh Sharma</td>
<td>Design, synthesis, characterisation and host-guest interaction studies of p-stacking self assembled porous organic framework</td>
<td>Dr. Sujit K. Ghosh</td>
</tr>
<tr>
<td>7</td>
<td>Prashant Agrawal</td>
<td>Bitumen- organo-clay composites</td>
<td>Shell, Bangalore</td>
</tr>
<tr>
<td>8</td>
<td>Abhinav Kumar</td>
<td>Interaction of polyethylenimine with phospholipid bilayer at different pH: A molecular dynamics study</td>
<td>Dr. Sudip Roy (NCL Pune)</td>
</tr>
</tbody>
</table>

MS Thesis-2013

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Student</th>
<th>Thesis Title</th>
<th>Thesis Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piyush Agarwal</td>
<td>Pair-wise dispersive corrections of an optimally-tuned range-separated hybrid functional</td>
<td>Prof. Leecor Kronik (Wiezmann Institute, Israel)</td>
</tr>
<tr>
<td>2</td>
<td>Sumeet Kumar Singh</td>
<td>Probing the stability of designed coiled-coil motifs using small synthetic fluorescent amino acids</td>
<td>Dr. H. N. Gopi</td>
</tr>
<tr>
<td>3</td>
<td>Nishant Singh</td>
<td>Design and synthesis of J and H aggregates of glycyrrhetinic acid esters as low molecular weight organogelators</td>
<td>Dr. Vijay Gadgil HUL, Bangalore</td>
</tr>
<tr>
<td>4</td>
<td>Shreyas Supekar</td>
<td>Sequence dependent localized distribution of various water dynamics in the grooves of DNA</td>
<td>Dr. Arnab Mukherjee</td>
</tr>
<tr>
<td>5</td>
<td>Anup Ingole</td>
<td>Study of interaction between fluorescent dyes and cucurbituril host in aqueous solution</td>
<td>Dr. Partha Hazra</td>
</tr>
<tr>
<td>6</td>
<td>Amit Kumar</td>
<td>Synthesis, properties and photochemistry of organomodified polymers</td>
<td>Dr. Ashish Vaidya Hindustan Unilever, Bangalore</td>
</tr>
<tr>
<td>7</td>
<td>Iti Kapoor</td>
<td>A diversity oriented synthesis pathway for leodoglucamide analogues</td>
<td>Dr. Srinivas Hotha</td>
</tr>
<tr>
<td>8</td>
<td>Rohan Kumbhare</td>
<td>Design, synthesis and evaluation of scaffolds for thiol-mediated tunable drug release</td>
<td>Dr. Harinath Chakrapani</td>
</tr>
<tr>
<td>9</td>
<td>Uma Sridhar</td>
<td>Dextrin vesicles and their encapsulation capabilities for drug delivery</td>
<td>Dr. M. Jayakannan</td>
</tr>
<tr>
<td>10</td>
<td>Suhas Shahaji Gawali</td>
<td>Synthesis and characterization of inhibitor loaded nanoparticles for temporal targeting of PI3K signalling</td>
<td>Dr. S. Basu</td>
</tr>
</tbody>
</table>

MS Thesis-2014

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Student</th>
<th>Thesis Title</th>
<th>Thesis Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shweta Singh</td>
<td>Structure-Property correlation studies of – donor based MOF</td>
<td>Dr. Sujit K. Ghosh</td>
</tr>
<tr>
<td>2</td>
<td>Koturkar Deepali Madhusudan</td>
<td>Synthesis and characterization of polymeric nanoparticles for dual drug delivery in cancer.</td>
<td>Dr. Sudipta Basu</td>
</tr>
<tr>
<td>3</td>
<td>Vikas Negi</td>
<td>DFT based study of methanation in the presence of subsurface atomic hydrogen on Co (0001) surface</td>
<td>Dr. Aarthi Thyagarajan, Shell Technology, Bangalore</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the Student</td>
<td>Thesis Title</td>
<td>Thesis Supervisor</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>Vikash Kumar</td>
<td>Development of π-conjugated polymer sensors and organic phosphors for luminescent materials</td>
<td>Dr. M Jayakannan</td>
</tr>
<tr>
<td>5</td>
<td>Rupesh Kumar Xaxa</td>
<td>Spreading behavior of oil-in-water emulsion on model solid substrates</td>
<td>Dr. Sudipta Ghosh Dastidar</td>
</tr>
<tr>
<td>6</td>
<td>Sreejith Varma J</td>
<td>Synthesis of acryl amidines via intramolecular amino group migration</td>
<td>Dr. Pinaki Talukdar</td>
</tr>
<tr>
<td>7</td>
<td>Upendra Singh</td>
<td>Synthesis of nanomaterials and their composites for energy conversion and storage</td>
<td>Dr. Satishchandra Ogale, NCL Pune</td>
</tr>
<tr>
<td>8</td>
<td>Anurag Agrawal</td>
<td>Synthesis, incorporation and fluorescence of base modified Peptide Nucleic Acid (PNA) monomers</td>
<td>Dr. S. G. Srivatsan</td>
</tr>
<tr>
<td>9</td>
<td>Indra Kumar Mahawar</td>
<td>Synthesis of thiophosphoramido and phosphoramido ligands and reactivity studies with metal ions</td>
<td>Dr. Boomi Shankar</td>
</tr>
<tr>
<td>10</td>
<td>Sumit Bhatnagar</td>
<td>Cost effective synthesis of metaloxides/sulphides for enhanced supercapacitor application</td>
<td>Dr. Satishchandra Ogale, NCL Pune</td>
</tr>
<tr>
<td>11</td>
<td>Vivek Kumar</td>
<td>Biophysical Aspects of Binding Interaction between Anticancer Drugs and G-Quadruplex</td>
<td>Dr. Partha Hazra</td>
</tr>
<tr>
<td>12</td>
<td>Ravi Raja Adhikari Panda</td>
<td>Nucleophilic addition on glycosyl 1,2-orthoesters of pyranose and furanosoyl sugars</td>
<td>Dr. Srinivas Hotha</td>
</tr>
<tr>
<td>13</td>
<td>Amrit Kumar</td>
<td>Design, synthesis, characterization and host-guest interaction studies of triazine based covalent organic frameworks</td>
<td>Dr. Sujit Ghosh</td>
</tr>
<tr>
<td>14</td>
<td>P. Sudheer Kumar</td>
<td>Theoretical study of structural changes in DNA under high external hydrostatic pressure</td>
<td>Dr. Anirban Hazra</td>
</tr>
<tr>
<td>15</td>
<td>Digvijay Porwal</td>
<td>Multicomponent reactions involving aryynes, phosphine and N-substituted Isatins</td>
<td>Dr. A Y Biju, NCL Pune</td>
</tr>
<tr>
<td>16</td>
<td>Shada Arun Dixith Reddy</td>
<td>Chloro bridged Palladium (II) hexamers supported by tris imido phosphate tri-aniions and studies of their catalytic evaluations</td>
<td>Dr. R Bhoomi Shankar</td>
</tr>
<tr>
<td>17</td>
<td>Aditi Jakhar</td>
<td>Novel multi-coded molecular recognition motifs for fully extended programmed molecular self-assembly</td>
<td>Dr. G J Sanjayan, NCL Pune</td>
</tr>
<tr>
<td>18</td>
<td>Akula Venumadav</td>
<td>Design strategy to magnetic-plasmonic nanohybrids</td>
<td>Dr. Seema Varma</td>
</tr>
<tr>
<td>19</td>
<td>Raya Rahul Kumar</td>
<td>Design and Synthesis of New porphyrin based COF containing intramolecular H-bonding for the enhancement of stability and crystallinity</td>
<td>Dr. Rahul Banarjee, NCL Pune</td>
</tr>
<tr>
<td>20</td>
<td>Vimlesh Kumar Bind</td>
<td>Supramolecular phthalocyanine aggregates</td>
<td>Dr. Nirmalya Ballav</td>
</tr>
<tr>
<td>21</td>
<td>Rajkumar Yadav</td>
<td>Synthesis & characterization of [14]Thiatripyrtrim (2.1.1) and crystallization & physical properties of thiatripyrtrim co-crystals</td>
<td>Dr. V. G. Anand</td>
</tr>
<tr>
<td>22</td>
<td>Bhaisare Rupal Dinesh</td>
<td>Mild and biocompatible synthesis of highly symmetric tetra-substituted pyrazine from amino acid and peptides: A novel strategy for self-stapling of peptide</td>
<td>Dr. H. N. Gopi</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the Student</td>
<td>Thesis Title</td>
<td>Thesis Supervisor</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>23</td>
<td>Vemulapalli Louwkhya</td>
<td>Synthesis and characterization of insulin mimetic vanadyl complexes and their binding studies with BSA</td>
<td>Prof. Devadas Manwal, Osmania University</td>
</tr>
<tr>
<td>24</td>
<td>Ankita Malik</td>
<td>Synthesis and utilisation of β-hydroxy α-amino acids (Statines) in the design of hybrid peptide foldamers and their biological applications</td>
<td>Dr. H. N. Gopi</td>
</tr>
<tr>
<td>25</td>
<td>Sher Singh Meena</td>
<td>Nucleation and growth of ZnO on different surfaces and study of their functional properties</td>
<td>Dr. Amitava Pramanik, Uniliver R&D, Bangalore</td>
</tr>
<tr>
<td>26</td>
<td>Vivek Verma</td>
<td>Synthetic and botanical mosquito repellent and their antibacterial activity in PAN membrane</td>
<td>Dr. K Balasubramanian, Defence Institute of Advance Technology, Pune</td>
</tr>
<tr>
<td>27</td>
<td>Kush Kumar Upadhyay</td>
<td>Synthesis of metal oxides/sulfides and porous carbon for energy storage application</td>
<td>Dr. Satishchandra Ogale, NCL Pune</td>
</tr>
<tr>
<td>28</td>
<td>Siddharth Chopra</td>
<td>Composite materials for shoe soles</td>
<td>V. B. Parvatikar, Footwear Design and Dev. Inst., Noida</td>
</tr>
<tr>
<td>29</td>
<td>Pilli Veena</td>
<td>Enhanced dispersion of catalytic phases on metal oxides</td>
<td>Dr. M. Madhusudhan Rao, Shell Technology Centre, Bangalore</td>
</tr>
<tr>
<td>30</td>
<td>Abhishek Singh</td>
<td>Interaction and Fabrication of OPV functionalized SWNT optical sensors</td>
<td>Dr. Harsh Chaturvedi</td>
</tr>
<tr>
<td>31</td>
<td>Abhishek Meena</td>
<td>Fe-TAML encapsulated MSN as biomimic peroxidas for picomole detection of proteins</td>
<td>Dr. Sayam Sengupta, NCL Pune</td>
</tr>
<tr>
<td>32</td>
<td>Pramod Kumar</td>
<td>Synthesis and evaluation of charged PNA analogues/conjugates for improved DNA/RNA binding selectivity and better cell entry</td>
<td>Prof. K. N. Ganesh</td>
</tr>
</tbody>
</table>

MS Thesis-2015

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Student</th>
<th>Thesis Title</th>
<th>Thesis Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mahitha M. K.</td>
<td>Application of nanoscale materials in analytical mass spectrometry</td>
<td>Prof. T. Pradeep, IIT Madras</td>
</tr>
<tr>
<td>2</td>
<td>Aswathi Ashok</td>
<td>Plasmonics and magnetic properties in doped semiconductor nanocrystals</td>
<td>Dr. Angshuman Nag</td>
</tr>
<tr>
<td>3</td>
<td>Mhatre Maitreyee Anant</td>
<td>Biodegradable polymer scaffolds for drug delivery</td>
<td>Dr. M. Jayakannan</td>
</tr>
<tr>
<td>4</td>
<td>Padmaja M.</td>
<td>Ruthenium-catalyzed highly regio- and stereoselective oxidative coupling of π-components: A versatile route to diene and heterocycles</td>
<td>Dr. M. Jeganmohan</td>
</tr>
<tr>
<td>5</td>
<td>Sarangamath</td>
<td>Functionalized nucleoside analogues for nucleic acid study by NMR and fluorescence spectroscopy</td>
<td>Dr. S. G. Srivatsan</td>
</tr>
<tr>
<td>6</td>
<td>Mallojjala Sharath Chandra</td>
<td>Organic sources of hydrogen sulphide</td>
<td>Dr. Harinath Chakrapani</td>
</tr>
<tr>
<td>7</td>
<td>Golu Parte</td>
<td>Synthesis of high surface area carbon materials and their functional composites with metal oxides for energy storage</td>
<td>Dr. Satishchandra Ogale, NCL Pune</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name of the Student</td>
<td>Thesis Title</td>
<td>Thesis Supervisor</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Sujoy Saha</td>
<td>Anion substitution in metal sulfides and selenides</td>
<td>Prof. C. N. R. Rao, JNCASR, Bangalore</td>
</tr>
<tr>
<td>9</td>
<td>Arya Thampi</td>
<td>Label-free imaging of intact, pigmented melanocytes</td>
<td>Dr. Mrinalini Puranik</td>
</tr>
<tr>
<td>10</td>
<td>Manish Kumar</td>
<td>Supramolecular chemistry of modified Tripyrranes</td>
<td>Dr. V. G. Anand</td>
</tr>
<tr>
<td>11</td>
<td>Nikhil Y. L. K.</td>
<td>Exploration of oxidation reactions using heterogenized Fe complexes under flow</td>
<td>Dr. Sayam Sengupta, NCL</td>
</tr>
<tr>
<td>12</td>
<td>T. Sriharsha</td>
<td>Nanoscale heterostructure interfaces for water splitting</td>
<td>Dr. Aninda J Bhattacharyya, IISC Bangalore</td>
</tr>
<tr>
<td>13</td>
<td>Raju Lunkad</td>
<td>Influence of concentrations on phase transformation of surfactant bilayers</td>
<td>Dr. Ananya Debnath, IIT Jodhpur</td>
</tr>
<tr>
<td>14</td>
<td>Pratyush Kumar Mishra</td>
<td>Development of fluorescent probes for hydrogen sulfide sensing</td>
<td>Dr. Pinaki Talukdar</td>
</tr>
<tr>
<td>15</td>
<td>Maddala Bala Gopal</td>
<td>Plasmonic property of doped semiconductor nanocrystals for chemical sensing</td>
<td>Dr. Angshuman Nag</td>
</tr>
<tr>
<td>16</td>
<td>Divya Mahendran</td>
<td>Surface chemical modification of biomimetic materials</td>
<td>Dr. Ashish Vaidya, Unilever R&D, Bangalore</td>
</tr>
<tr>
<td>17</td>
<td>Niranjana Sreelal</td>
<td>Calcium carbonate crystallization on household surfaces from Hard water</td>
<td>Dr. Amitava Pramanik, Unilever R&D, Bangalore</td>
</tr>
<tr>
<td>18</td>
<td>Pooja Prasanthan T.</td>
<td>Kinetics of SLES degradation in acidic environment and its impact on phase behaviour</td>
<td>Dr. Jii Kottukapally, Hindustan Unilever Research Centre, Bangalore</td>
</tr>
<tr>
<td>19</td>
<td>Farzeena C.</td>
<td>Measurement of surface and interfacial properties</td>
<td>Dr. Narayanan Subrahmaniam, Hindustan Unilever Research Centre, Bangalore</td>
</tr>
<tr>
<td>20</td>
<td>Thameez Mohammed K.Y.</td>
<td>Stimuli responsive polysaccharide vesicles for targeted anticancer drug delivery</td>
<td>Dr. M. Jayakannan</td>
</tr>
</tbody>
</table>

National Eligibility Test (NET) qualification

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Category</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohit Kumar</td>
<td>106</td>
<td>UGC-JRF</td>
<td>2011</td>
</tr>
<tr>
<td>Abhinaw Kumar</td>
<td>32</td>
<td>LS</td>
<td>2011</td>
</tr>
<tr>
<td>Kumbhare Rohan Surendra</td>
<td>34</td>
<td>CSIR-JRF</td>
<td>2012</td>
</tr>
<tr>
<td>Ankita Malik</td>
<td>44</td>
<td>CSIR-JRF</td>
<td>2012</td>
</tr>
<tr>
<td>Akula Venumadhav</td>
<td>77</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>Iti Kapoor</td>
<td>78</td>
<td>CSIR-JRF</td>
<td>2012</td>
</tr>
<tr>
<td>Rajkumar</td>
<td>81</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>Veena Jessy</td>
<td>114</td>
<td>CSIR-JRF</td>
<td>2012</td>
</tr>
<tr>
<td>Monika Dash</td>
<td></td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Anurag Agrawal</td>
<td></td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Akula Venumadhav</td>
<td></td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Rajkumar Yadav</td>
<td></td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Pilli Veena</td>
<td></td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>Name</td>
<td>Exchange Program</td>
<td>University/Advisor</td>
<td>Year</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Upendra Singh</td>
<td>DAAD-WISE</td>
<td>Friedrich Alexander Universität, Erlangen Nurnberg Advisor: Prof. Hans Peter Stienruck</td>
<td>2013</td>
</tr>
<tr>
<td>Meghana Raghunandan</td>
<td>FUB-INSPIRE (DST and Freie Universität, Berlin)</td>
<td>Freie Universität, Berlin Advisor: Priv.-Doz. Dr. Axel Pelster</td>
<td>2013</td>
</tr>
<tr>
<td>Sharad Joshi</td>
<td>UKIERI</td>
<td>University of Surrey Advisor: Prof. Ben Murdin</td>
<td>2013</td>
</tr>
<tr>
<td>Amey Anant Apte</td>
<td>UKIERI</td>
<td>University of Surrey Advisor: Prof. S. Ravi P Silva</td>
<td>2013</td>
</tr>
<tr>
<td>Shada Arun Dixit Reddy</td>
<td>Pelotonia Fellowship</td>
<td>Ohio State University Advisor: Prof. Ching-Shih Chen</td>
<td>2013</td>
</tr>
<tr>
<td>Monica Dash</td>
<td></td>
<td>CERN, Geneva, Switzerland Advisor: Joao Martins Guiherme Correia</td>
<td>2013</td>
</tr>
<tr>
<td>Anurag Agarwal</td>
<td>DAAD-WISE</td>
<td>University of Gottingen Advisor: Prof. Ulf Diederichsen</td>
<td>2012</td>
</tr>
<tr>
<td>Soumitra Athavale</td>
<td>DAAD-WISE</td>
<td>University of Gottingen Advisor: Prof. Ulf Diederichsen</td>
<td>2012</td>
</tr>
<tr>
<td>Rohit Chikaraddy</td>
<td></td>
<td>Notre dame Radiation Laboratory Advisor: Dr. Ireneusz Janik</td>
<td>2012</td>
</tr>
<tr>
<td>Neha Agarwal</td>
<td>DAAD-WISE</td>
<td>University of Gottingen Advisor: Prof. Ulf Diederichsen</td>
<td>2011</td>
</tr>
<tr>
<td>Name</td>
<td>Exchange Program</td>
<td>University/Advisor</td>
<td>Year</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Iti Kapoor</td>
<td>DAAD-WISE</td>
<td>University of Regensburg, Germany Advisor: Prof. Dr. David Diaz Diaz</td>
<td>2011</td>
</tr>
<tr>
<td>Haritha Rao</td>
<td>DAAD-WISE</td>
<td>Goethe Universitat, Germany</td>
<td>2010</td>
</tr>
<tr>
<td>Abhinav Kumar</td>
<td>DAAD-WISE</td>
<td>Universitaet des Saarlandes, Saarbrucken</td>
<td>2010</td>
</tr>
</tbody>
</table>

Alumni Affiliation of Graduated Class of BS-MS Students

Class of 2011

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Present Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Haritha Rao</td>
<td>PhD in Chemistry - Goettingen university, Germany</td>
</tr>
<tr>
<td>2</td>
<td>Prakhar Arora</td>
<td>Shell India Ltd, Bangalore</td>
</tr>
<tr>
<td>3</td>
<td>Vedant Pande</td>
<td>Shell India Ltd, Bangalore</td>
</tr>
<tr>
<td>4</td>
<td>Rakesh Gaur</td>
<td>PhD in Chemistry - IISER, Pune</td>
</tr>
<tr>
<td>5</td>
<td>Ashutosh Priyadarshi</td>
<td>Shell India Ltd, Bangalore</td>
</tr>
<tr>
<td>6</td>
<td>D. Pravarthana</td>
<td>Erasmus Mundus scholarship- UCBN, Caen, France- PhD in Physics</td>
</tr>
<tr>
<td>7</td>
<td>Varun Kumar Rishi</td>
<td>PhD-Chemistry - University of Florida</td>
</tr>
</tbody>
</table>

Class of 2012

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Present Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sandeep Gupta</td>
<td>PhD in Chemistry, BARC, Mumbai</td>
</tr>
<tr>
<td>2</td>
<td>Dharmraj Robins Chourasia</td>
<td>Genex Patent Office, Pune</td>
</tr>
<tr>
<td>3</td>
<td>Rohit Kumar</td>
<td>MBA at Indian Institute of Management (IIM), Kozhikode</td>
</tr>
<tr>
<td>4</td>
<td>Neha Agrawal</td>
<td>PhD in Chemistry, Purdue Univ, Indiana, USA</td>
</tr>
<tr>
<td>5</td>
<td>Anuj Bisht</td>
<td>Hey Math, Chennai</td>
</tr>
<tr>
<td>6</td>
<td>Prashant Agrawal</td>
<td>MSc, Queen's University, Canada</td>
</tr>
<tr>
<td>7</td>
<td>Abhinaw Kumar</td>
<td>PhD in Chemistry, University of Utah, USA</td>
</tr>
</tbody>
</table>

Class of 2013

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Present Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piyush Agrawal</td>
<td>PhD in Chemistry, UTH, Zurich</td>
</tr>
<tr>
<td>2</td>
<td>Sumeet Kumar Singh</td>
<td>Ph.D in Chemistry, Ben - Gurion University, Israel</td>
</tr>
<tr>
<td>3</td>
<td>Nishant Singh</td>
<td>Hey Math, Chennai</td>
</tr>
<tr>
<td>4</td>
<td>Shreyas Supekar</td>
<td>PhD in Chemistry, TU Munich</td>
</tr>
<tr>
<td>5</td>
<td>Amit Kumar</td>
<td>Internship, Shell India Ltd, Bangalore</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name</td>
<td>Present Affiliation</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Iti Kapoor</td>
<td>PhD in Chemistry, UIUC, USA</td>
</tr>
<tr>
<td>7</td>
<td>Kumbhare Rohan Surendra</td>
<td>Ph.D in Chemistry, University of Pittsburgh, USA</td>
</tr>
<tr>
<td>8</td>
<td>Uma Sridhar</td>
<td>PhD, University of Massachusetts, Amherst, USA</td>
</tr>
<tr>
<td>9</td>
<td>Gawali Suhas Shahaji</td>
<td>IIT, Bombay for project</td>
</tr>
</tbody>
</table>

Class of 2014

1. Anurag Agrawal
 - PhD in Chemistry, University of Wisconsin, Madison, USA
2. Vikas Negi
 - PhD in Chemistry, Eindhoven University of Technology, Netherlands
3. Rohit Chikkaraddy
 - PhD in Chemistry, University of Pennsylvania, USA
4. Vikash Kumar
 - PhD in Chemistry, University of Massachusetts, Amherst, USA
5. Amrit Kumar
 - PhD in Chemistry, University of Limerick, Ireland
6. Shada Arun Dixith Reddy
 - PhD in Chemistry, Rutgers University, New Jersey
7. Sumit Bhatnagar
 - PhD in Chemistry, National University of Singapore
8. Pilli Veena
 - Shell Technology Centre, Bangalore
9. Digvijay Porwal
 - PhD in Chemistry, MPI, TU Berlin
10. Pramod Kumar
 - Opening coaching class
11. Akula Venumadhav
 - PhD in Chemistry, IIT Mumbai
12. Ankita Malik
 - PhD, Max Plank Institute of Colloids and Interfaces, Germany
13. Bhaissare Rupal Dinesh
 - PhD in Chemistry, IISER-Pune

List of Publications by Undergraduate Chemistry Students

5. Tanpure, A. A.; Patheja, P.; Srivatsan, S. G. Label-free Fluorescence Detection of the Depurination Activity

Integrated Ph.D. Students
Total: 26
Ms. Anindita Adak (2011)
Mr. Santosh Kumar Singh (2011)
Ms. Sneha Banerjee (2012)
Ms. Hridya V.M. (2012)
Mr. Rahi Masoom Reja (2012)
Mr. Anish Rao (2013)
Mr. Bharat Tandon (2013)
Mr. Arunabha Sen (2014)
Ms. Bandana Kumari (2014)
Mr. Girish Singh Bisht (2014)
Mr. Kingshuk Roy (2014)
Ms. Konoya Das (2014)
Mr. Aamod Desai (2011)
Mr. Jerrin Thomas George (2012)
Ms. Nandi Aditi Chinmoy (2012)
Mr. Kulkarni Amogh Mahesh Chandra (2012)
Mr. Abhishek Swarnkar (2012)
Ms. Aditi Dixit (2013)
Ms. Mehak Malhotra (2013)
Ms. Shivani Sharma (2013)
Ms. Kriti Gupta (2014)
Mr. Omshanker Tiwari (2014)
Mr. Prashant Jain (2014)
Ms. Shalini Pandey (2014)
Mr. Vikash Kumar Ravi (2014)

Ph.D. Students
Total: 146
2008
Mr. Anupam Bandyopadhyay
Mr. Amar R. Mohite
Mr. Prakash R. Sultane
Mr. Sandeep Jadhav
Ms. Mahima Goel
Mr. Sachitanand M. Mali
2009
Mr. Maroti Govindrao Pawar
Mr. Nitin Bansode
Mr. Anupam Sawant
Mr. Tullimilli Yadagiri Gopalkrishna
Mr. Vijay Kadam
Mr. Dnyaneshwar Kand
Ms. Smita Kashyap
Mr. Sumit Kumar
Mr. Abhigyan Sengupta
Mr. Satish Malwal
Mrs. Minal Sachin Pednekar
2010
Mr. A. Dharmaraja
Mr. Arun Tanpure
Mr. Biplab Joarder
Ms. Indu Kaul
Mr. Pramod PS.
Mr. S. Anantharaj
Mr. Sanjog Nagarkar
Mr. Santosh Gadekar
Mr. Satheesh Ellipilli
Ms. Wilbee D.S.
Mr. Kiran Reddy Baddigam
Mr. Mothukuri Ganesh Kumar
Mr. Bapurao Surnar
Mr. Biplab Manna
Mr. Lakshmi Vr Babu Syamala
Ms. Kavita Sharma
Mr. Sharad Garud - Deshmukh
2011
Mr. Rohan Dattatray Yadav
Mr. Dinesh Pratapsinh Chauhan
Mr. Venkateswararao Boddu
Mr. Krishna Gavvala
Mr. Vinayak Shahaji Khodade
Mr. Ravikiran Cm.
Mr. Kishor Padala
Mr. Mandar Vinod Kulkarni
Ms. Sohini Sarkar
Mr. Sudeb Ghosh
Mr. Soumya Mukherjee
Mr. Santosh Panchal
Mr. Rakesh Gaur
Mr. Partha Pritam Patra
Mr. Anantkumar Srivastava
Mr. Avishek Karmakar
Mr. Maidul Islam
Mr. Siva Kothi Sangabathuni
Mr. Hari Krishna Bavireddi
Mr. Sushil Benke
Ms. Arundhati Roy
Mr. Balu Navale
Mr. Pramod Sabale
Mr. Ranguwar Rajendra
Mr. Barun Bhakur
Mr. Rajendra Aluri
Mr. Karnati Narasimha
Mr. Kundansingh Pardeshi
Mr. Tanmay Saha
2012
Mr. K. Rajkumar
Mr. Mahesh Deshmukh
Mr. Yettelpu Gurivi Reddy
Mr. Tushar Khopade
Mr. Mahesh Gudem
Mr. Mallu Chenna Reddy
Mr. N. Ashok
Mr. Sathish Dasari
Mr. Ashok Yadav
Mr. Avidhoot S Datar
Mr. Bijoyananda Mishra
Ms. Madhuri Gade
Ms. Sappati Subrahmanyam
Mr. Nandha Kumar
Mr. Naganath Yadav More
Mr. Trimbak Mete
Mr. Shahaji More
Mr. Reman Kumar Singh
Ms. Aparna Banerjee
Ms. Bhagyashree Kulkarni
Mr. Rajkumar Misra
Mr. Abhik Mallick
Mr. Praveen Kumar
Mr. Prabhakar Pawar
Ms. Sonashree Saxena
Mr. Prawan Kumar Jha
Ms. Shalini
Mr. Sandeep Kumar Palvai
Mr. Shyamapada Nandi
Mr. Sayan Mondal

Int. Ph.D. and Ph.D. Students Information Sheet
Ph.D. Degrees (Chemistry) Awarded

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name</th>
<th>Title of Ph.D. Thesis</th>
<th>Thesis Supervisor</th>
<th>Ph.D. Degree Awarded</th>
<th>Present Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Anupam Bandyopadhyay</td>
<td>Synthesis and Utilization of Naturally Occurring Functionalized Gamma Amino Acids in the Design of Hybrid Peptide Foldamers</td>
<td>Dr. H. N. Gopi</td>
<td>2013</td>
<td>Post-doctoral Fellow, Boston College, Boston, USA</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Mahima Goel</td>
<td>Supramolecular Assemblies of π-conjugated Phenylenevinylene in Solid State</td>
<td>Dr. M. Jayakannan</td>
<td>2013</td>
<td>Lecturer, Department of Chemistry, Ramjas College, New Delhi</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Amar R. Mohite</td>
<td>Atomistic Investigation of Polymer Electrolyte Membrane Nanostructure and Dynamics of Molecular Transport in Fuel Cells</td>
<td>Dr. R. G. Bhat</td>
<td>2014</td>
<td>Research Scientist, GVK Biosciences, Hyderabad (Pharma Company)</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Sandip V. Jadhav</td>
<td>Design, Synthesis and Conformational Analysis of Hybrid γ-Peptide Foldamers Comprised of Proteinogenic Sidechains and Their Utilization in the Design of Novel Biomaterials</td>
<td>Dr. H. N. Gopi</td>
<td>2014</td>
<td>Post-doctoral Fellow, Institute of Bioengineering and Nanotechnology, Singapore</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name</td>
<td>Title of Ph.D. Thesis</td>
<td>Thesis Supervisor</td>
<td>Ph.D. Degree Awarded</td>
<td>Present Affiliation</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Sachitanand M. Mali</td>
<td>Chemistry on Unnatural Amino acid Peptide Building Blocks and Bioinspired Peptide Synthesis</td>
<td>Dr. H. N. Gopi</td>
<td>2014</td>
<td>Post-doctoral Fellow, Ben-Gurion University, Israel</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Prakash R. Sultane</td>
<td>Total Synthesis of 1-Deoxy-6,7,8a-epi-Castanospermine, (+)-Epiquinamide, (+)-CP-99,994 and Orthogonal – Deacetylation and N-Cbz Deprotection</td>
<td>Dr. R. G. Bhat</td>
<td>2014</td>
<td>Research Scientist, TCG Life Sciences, Pune (Pharma Company)</td>
</tr>
<tr>
<td>7</td>
<td>Shivaji A. Thadke</td>
<td>Steroselective Glycosidations and Application to the Mycobacterial Arabinogalactand by Gold Catalysis</td>
<td>Dr. Srinivas Hotha</td>
<td>2014</td>
<td>Post-doctoral Fellow, Carnegie Mellon University, USA</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Anurag P. Sunda</td>
<td>Atomistic Investigation of Polymer Electrolyte Membrane Nanostructure and Dynamics of Molecular Transport in Fuel Cells</td>
<td>Dr. Arun Venkatnathan</td>
<td>2014</td>
<td>Post-doctoral Fellow, JNCASR, Bengaluru</td>
</tr>
<tr>
<td>9</td>
<td>Dr. K. R. Ramya</td>
<td>Electronic Structure Characterization of Molecular Interactions in Clathrate Hydrates</td>
<td>Dr. Arun Venkatnathan</td>
<td>2014</td>
<td>Post-doctoral Fellow, University of Iceland, Iceland</td>
</tr>
<tr>
<td>10</td>
<td>Dr. Arvind Kumar Gupta</td>
<td>Synthesis and Functional Studies of Transition Metal Complexes Derived from Amino and Imido P(V) Ligands</td>
<td>Dr. R. Boomishankar</td>
<td>2014</td>
<td>Post-doctoral Fellow, National Dong-Hua University, Taiwan</td>
</tr>
<tr>
<td>11</td>
<td>Dr. Jain Deepak Ramesh</td>
<td>γ-C-Substituted Multifunctional Peptide Nucleic Acids: Design, Synthesis and Bioevaluation</td>
<td>Prof. K. N. Ganesh</td>
<td>2014</td>
<td>Post-doctoral Fellow, University of Boulder France</td>
</tr>
<tr>
<td>12</td>
<td>Dr. Abhigyan Sengupta</td>
<td>Excited State Dynamics and Photophysics in Bulk, Confined and Biomimetic Systems</td>
<td>Dr. Partha Hazra</td>
<td>2014</td>
<td>Post-doctoral Fellow, University of Colorado, Boulder</td>
</tr>
<tr>
<td>13</td>
<td>Dr. Sumit Kumar</td>
<td>Probing Non-covalent Interactions in Biomolecules and Materials: A Gas Phase Laser Spectroscopy Study of N-heterocyclic Aromatic Complexes</td>
<td>Dr. Aloke Das</td>
<td>2014</td>
<td>Post-doctoral Fellow, Max Planck Institute, Gottingen, Germany</td>
</tr>
</tbody>
</table>
The Chemical Sciences Department has 34 faculty, 150 Ph.D and 30 Integrated Ph.D. students, 20-25 MS students in their 5th year, actively pursuing research work in frontier areas of chemical sciences. The research areas fall broadly into 5 categories ranging from chemical biology, computational chemistry, and spectroscopy to material science and catalysis.

The division has established two Centres of Excellence: (i) Nanosciences (funded by Nanoscience Initiative, from Department of Science and Technology, New Delhi) and (ii) Centre for Energy and Sustainable Environment (funded by the MHRD, Govt. of India, New Delhi). The division has also received support for high-end instrumentation (600 and 400 MHz NMR, spectrometer, X-ray diffractometer and Atomic Force Microscopy from DST, New Delhi under the FIST Level II Programme and is endowed with a number of advanced analytical equipments.

The thrust of the research programme in Chemistry at IISER Pune is motivated by cloud concept shown in the Figure above, with collaborative participation from faculty in other disciplines. It has active collaborations with various other research organizations in Pune such as CSIR-NCL, University of Pune and DRDO. Various international collaborations have been established through MoU signed at the Institute level, in particular with Goettingen University, Universities of Bath and Glasgow. The chemistry division at IISER Pune has emerged as one of the top 10 chemistry divisions in India. The research publications from the division have an average impact factor of 4.6 to 5.00/paper consecutively for the last four years.

The teaching programme has been recognized by the Royal Society of Chemistry (UK) through Accreditation in 2013. The faculties have received a number of peer recognitions such as Science medal of the Indian National Science Academy (Delhi), Young Associateship of Indian Academy of Sciences (Bangalore), medals from Chemical Research Society of India, Swarnajayanti Fellowship of DST etc. The following pages highlight research contributions from the Institute in the area of chemical sciences.
List of Faculty in Chemical Sciences

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. G. Anand</td>
<td>Associate Professor</td>
<td>Porphyrinoids, Molecular Recognition, Luminescent materials</td>
</tr>
<tr>
<td>Nirmalya Ballav</td>
<td>Assistant Professor</td>
<td>Nanoscience, Self-Assembled Monolayers, Electron-Beam-Lithography, Molecular Spintronics</td>
</tr>
<tr>
<td>Ramakrishna G. Bhat</td>
<td>Associate Professor</td>
<td>Chemical biology, molecular mimicry, drug design, peptide and organic synthesis</td>
</tr>
<tr>
<td>R. Boomi Shankar</td>
<td>Associate Professor</td>
<td>Main Group and Organometallic Chemistry</td>
</tr>
<tr>
<td>S Sandanaraj Britto</td>
<td>Assistant Professor</td>
<td>Chemical Biology/Physiology & Optical Molecular Imaging of Whole Organisms</td>
</tr>
<tr>
<td>Harinath Chakrapani</td>
<td>Assistant Professor</td>
<td>Organic Chemistry, Drug Discovery, Nitric Oxide Prodrugs</td>
</tr>
<tr>
<td>Srabanti Chaudhury</td>
<td>Assistant Professor</td>
<td>Chemical physics, theoretical biophysics</td>
</tr>
<tr>
<td>Jeetender Chugh</td>
<td>Assistant Professor</td>
<td>NMR spectroscopy of biomolecules</td>
</tr>
<tr>
<td>Alok Das</td>
<td>Associate Professor</td>
<td>Gas phase laser spectroscopy, Non-covalent interactions in biomolecules</td>
</tr>
<tr>
<td>Krishna N. Ganesh</td>
<td>Director, IISER Pune, Professor and Coordinator</td>
<td>Biomolecular chemistry of nucleic acids, peptides, lipids; drug development, DNA diagnostics and nanotechnology</td>
</tr>
<tr>
<td>Prasenjit Ghosh</td>
<td>Assistant Professor</td>
<td>Atomistic modeling of Materials</td>
</tr>
<tr>
<td>Sujit K. Ghosh</td>
<td>Assistant Professor</td>
<td>Functional Coordination Chemistry, Organic-Inorganic Hybrid Materials, Supramolecular Chemistry</td>
</tr>
<tr>
<td>Boopathy Gnanaprakasam</td>
<td>Assistant Professor</td>
<td>Natural products synthesis, Asymmetric synthesis, Flow chemistry, Fluorination methods</td>
</tr>
<tr>
<td>Hosahudya N. Gopi</td>
<td>Associate Professor</td>
<td>Peptides and hybrid miniproteins, inhibitors for HIV-1 and host cell interactions</td>
</tr>
<tr>
<td>Anirban Hazra</td>
<td>Assistant Professor</td>
<td>Theoretical Chemistry</td>
</tr>
<tr>
<td>Partha Hazra</td>
<td>Associate Professor</td>
<td>Photophysics and biophysics</td>
</tr>
<tr>
<td>Srinivas Hotha</td>
<td>Associate Professor</td>
<td>Glycochemical Biology</td>
</tr>
<tr>
<td>M. Jayakannan</td>
<td>Associate Professor</td>
<td>Polymer chemistry and nano-materials</td>
</tr>
<tr>
<td>Jeet Kalia</td>
<td>Assistant Professor</td>
<td>Chemical Biology: Ion channels, lipids, and bioconjugation</td>
</tr>
<tr>
<td>Shabana Khan</td>
<td>Assistant Professor</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Raghavendra Kikkeri</td>
<td>Assistant Professor</td>
<td>Carbohydrates, Nanoparticles, Porous Silicon, Sialic acid and Glycomics</td>
</tr>
<tr>
<td>Jegannmohan M.</td>
<td>Assistant Professor</td>
<td>Organometallic chemistry, Asymmetric synthesis</td>
</tr>
<tr>
<td>B. S. Madhava Rao</td>
<td>Visiting Faculty</td>
<td>Pulse radiolysis, Time resolved spectroscopy, Fast kinetics</td>
</tr>
<tr>
<td>Moumita Majumdar</td>
<td>Assistant Professor</td>
<td>Main Group Chemistry-Catalysis and Materials Applications</td>
</tr>
</tbody>
</table>
List of Faculty in Chemical Sciences

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. G. Anand</td>
<td>Associate Professor</td>
<td>Porphyrinoids, Molecular recognition, Luminescent materials</td>
</tr>
<tr>
<td>Nirmalya Ballav</td>
<td>Assistant Professor</td>
<td>Nanoscience, Self-Assembled Monolayers, Electron-Beam-Lithography, Molecular Spintronics</td>
</tr>
<tr>
<td>Ramakrishna G. Bhat</td>
<td>Associate Professor</td>
<td>Chemical biology, molecular mimicry, drug design, peptide and organic synthesis</td>
</tr>
<tr>
<td>R. Boomi Shankar</td>
<td>Associate Professor</td>
<td>Main Group and Organometallic Chemistry</td>
</tr>
<tr>
<td>S Sandanaraj Britto</td>
<td>Assistant Professor</td>
<td>Chemical Biology/Physiology & Optical Molecular Imaging of Whole Organisms</td>
</tr>
<tr>
<td>Harinath Chakrapani</td>
<td>Assistant Professor</td>
<td>Organic chemistry, combinatorial chemistry, bio-organic chemistry, biology in drug discovery</td>
</tr>
<tr>
<td>Srabanti Chaudhury</td>
<td>Assistant Professor</td>
<td>Chemical physics, theoretical biophysics</td>
</tr>
<tr>
<td>Jeetender Chugh</td>
<td>Assistant Professor</td>
<td>NMR spectroscopy of biomolecules</td>
</tr>
<tr>
<td>Aloke Das</td>
<td>Associate Professor</td>
<td>Gas phase laser spectroscopy, Non-covalent interactions in biomolecules</td>
</tr>
<tr>
<td>Krishna N. Ganesh</td>
<td>Director, IISER Pune</td>
<td>Biomolecular chemistry of nucleic acids, peptides, lipids; Professor and drug development, DNA diagnostics and nanotechnology Coordinator</td>
</tr>
<tr>
<td>Prasenjit Ghosh</td>
<td>Assistant Professor</td>
<td>Atomistic modeling of Materials</td>
</tr>
<tr>
<td>Sujit K. Ghosh</td>
<td>Assistant Professor</td>
<td>Functional Coordination Chemistry, Organic-Inorganic Hybrid Materials, Supramolecular Chemistry</td>
</tr>
<tr>
<td>Boopathy Gnanaprakasam</td>
<td>Assistant Professor</td>
<td>Natural products synthesis, Asymmetric synthesis, Flow chemistry, Fluorination methods</td>
</tr>
<tr>
<td>Hosahudya N. Gopi</td>
<td>Associate Professor</td>
<td>Peptides and hybrid miniproteins, inhibitors for HIV-1 and host cell interactions</td>
</tr>
<tr>
<td>Anirban Hazra</td>
<td>Assistant Professor</td>
<td>Theoretical Chemistry</td>
</tr>
<tr>
<td>Partha Hazra</td>
<td>Associate Professor</td>
<td>Photophysics and biophysics</td>
</tr>
<tr>
<td>Srinivas Hotha</td>
<td>Associate Professor</td>
<td>Glycochemical Biology</td>
</tr>
<tr>
<td>M. Jayakannan</td>
<td>Associate Professor</td>
<td>Polymer chemistry and nano-materials</td>
</tr>
<tr>
<td>Jeet Kalia</td>
<td>Assistant Professor</td>
<td>Chemical Biology: Ion channels, lipids, and bioconjugation</td>
</tr>
<tr>
<td>Shabana Khan</td>
<td>Assistant Professor</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Raghavendra Kikkeri</td>
<td>Assistant Professor</td>
<td>Carbohydrates, Nanoparticles, Porous Silicon, Sialic acid and Glycomics</td>
</tr>
<tr>
<td>Jeganmohan M.</td>
<td>Assistant Professor</td>
<td>Organometallic chemistry, Asymmetric synthesis</td>
</tr>
<tr>
<td>B. S. Madhava Rao</td>
<td>Visiting Faculty</td>
<td>Pulse radiolysis, Time resolved spectroscopy, Fast kinetics</td>
</tr>
<tr>
<td>Moumita Majumdar</td>
<td>Assistant Professor</td>
<td>Main Group Chemistry-Catalysis and Materials Applications</td>
</tr>
<tr>
<td>Pankaj Mandal</td>
<td>Assistant Professor</td>
<td>Terahertz spectroscopy - applications to nanoscience and biomolecule dynamics</td>
</tr>
<tr>
<td>Arnab Mukherjee</td>
<td>Assistant Professor</td>
<td>Theoretical and computational chemistry, biophysics</td>
</tr>
<tr>
<td>Muhammed Musthafa</td>
<td>Assistant Professor</td>
<td>Interfacial Electrochemistry, Functionalized Surfaces, Energy Conversion and Storage Devices, Water Splitting, Sensors</td>
</tr>
<tr>
<td>A. A. Natu</td>
<td>Visiting Faculty</td>
<td>Organic chemistry, combinatorial chemistry, bio-organic chemistry, biology in drug discovery</td>
</tr>
<tr>
<td>Pramod Pillai</td>
<td>Assistant Professor</td>
<td>Functional nanomaterials: Hybrid nanostructures for self-assembly, light harvesting and bio-targeting studies</td>
</tr>
<tr>
<td>Mrinalini Puranik</td>
<td>Associate Professor</td>
<td>Biomolecular Spectroscopy, Raman spectroscopy of proteins, Nucleic acids</td>
</tr>
<tr>
<td>S. G. Srivatsan</td>
<td>Associate Professor</td>
<td>Chemical biology, nucleic acid chemistry, assay development, functionalised nucleic acids</td>
</tr>
<tr>
<td>Pinaki Talukdar</td>
<td>Assistant Professor</td>
<td>Supramolecular chemistry in lipid membranes, synthetic organic and medicinal chemistry</td>
</tr>
<tr>
<td>R. Vaidhyanathan</td>
<td>Assistant Professor</td>
<td>Metal organic frameworks for selective carbon dioxide sequestration</td>
</tr>
<tr>
<td>Arun Venkatnathan</td>
<td>Associate Professor</td>
<td>Molecular modelling, fuel cells and computational quantum chemistry</td>
</tr>
</tbody>
</table>

Adjunct Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sourav Pal</td>
<td>NCL, Pune</td>
</tr>
</tbody>
</table>

Faculty Fellows

<table>
<thead>
<tr>
<th>Name</th>
<th>Fellowship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Angshuman Nag</td>
<td>Ramanujan Fellowship, DST, New Delhi</td>
</tr>
<tr>
<td>Dr. Sudipta Basu</td>
<td>Ramalingaswami Fellowship, DBT, New Delhi</td>
</tr>
<tr>
<td>Dr. Seema Verma</td>
<td>IISER Fellow, Pune</td>
</tr>
</tbody>
</table>

A. Chemical Biology & Organic Chemistry

Peptides and Peptide Nucleic Acids

Intracellular drug delivery is a key component of contemporary drug development. Designing efficient mechanisms to deliver macromolecules, in particular, DNA and peptides to intracellular targets across impermeable cell membranes would create new therapeutic opportunities. Oligopeptides are attractive alternatives to cationic polymers and lipids for nonviral DNA delivery. Many cationic peptides induce translocation of DNA across the cellular membrane and deliver the attached cargo to the nucleus. In this context, proline-rich peptides have been shown to possess cell penetrating ability. The proline-rich collagen was found to transport plasmid DNA and siRNA into cells and...
theoretical studies have supported formation of efficient DNA-collagen complexes. Previous work from this laboratory demonstrated a higher thermal and pH-dependent stability of 4(R/S)-aminoproline collagen peptides (P1 and P2) compared to the analogous natural 4R-hydroxyproline peptides. The ionizable 4(R/S)-amino groups in these peptides are protonated at physiological pH making them cationic. Many cell penetrating peptides including polyprolines are cationic by virtue of having multiple arginine or lysine residues. The guanidium groups in proteins are known to recognise the anionic sulfate of heparin on the plasma membrane and translocate through cell membranes.

These observations prompted Krishna Ganesh and his group to fabricate the intrinsically cationic 4(R/S)-guanidinoproline collagen peptides P3 and P4. The chimeric collagen peptides P3 and P4 were synthesized by ‘on-resin” guanidinylation, and shown to efficiently transfect plasmid DNA having GFP reporter vector (pRmHa3-GFP) in S2 cells even in the absence of an enhancer. The fluorophore tagged 4-guanidinoproline cationic peptides are seen as punctuates in cell cytoplasm, localised in specific cytoplasmic organelles.

Other research work in Krishna Ganesh’s group is focused on the study of newer analogues of peptide nucleic acids, which are cell permeable and on investigating the secondary structures adopted by collagen type polypeptides, from a functional perspective. In the case of PNA analogues, the team has synthesized, characterized and studied the DNA complementation of clickable Cγ-substituted methylene (azm)/butylene (azb) azido PNA s. These analogues enhanced the stability of the derived PNA:DNA duplexes and fluorescent PNA oligomers synthesized by their click reaction with propyne carboxyfluorescein were seen to accumulate around the nuclear membrane in 3T3 cells. Extending this work to the corresponding Cγ-substituted alkylamino and guanidine PNA analogues, they have shown that these cationic PNA analogues are even better in stabilizing the cDNA/RNA sequences and permeate the cell more efficiently. Further, there was an asymmetric distribution in their localization around the nuclear membrane. Continuing their earlier work on (2S,4S)-aminoproline polypeptides, which showed β-structure specifically in trifluoroethanol, but not in water. They have now shown that the (2S,4S)-hydroxyproline polypeptides also exhibit similar behavior, confirming the importance of intra residue and inter chain H-bonding in dictating the formation of observed structures. Interestingly, the analogous (2R,4R)-hydroxyproline polypeptides showed a mirror image β-structure, which is hitherto unknown. These results have importance in designing new functional peptidomimetic systems.

Nucleic Acid Chemistry and Biophysics

Seergazhi G. Srivatsan’s group is interested in developing tools to assess biological events by utilizing contemporary nucleic acid functions. In particular, his laboratory is interested in developing biophysical tools that would enable the study of nucleic acid structure, dynamics and function in vitro and in cells. He is also interested in developing multifunctional nucleolipid conjugates that could self-assemble into nanofibres, nanotubes and gels. It is expected that these self-assemblies would provide platforms for designing biosensors, biomaterials and scaffolds for non-templated/non-enzymatic oligomerization of nucleic acids.
particular, benzothiophene and benzofuran attached at the 5- and 8-position of pyrimidine and purine nucleosides, respectively, exhibited high fluorescence efficiency and excellent fluorescence solvatochromism. These analogues have been incorporated into RNA by enzymatic as well as chemical methods. His group has utilized them in developing fluorescence assays to (i) detect abasic sites (depurinated site) in DNA and RNA, (ii) monitor RNA-drug binding and (iii) study oligonucleotide dynamics in cell-like confined environment. Currently, his lab is developing multifunction nucleoside probes, which could be used to study the structure and function of nucleic acid simultaneously by fluorescence and NMR spectroscopy and by X-ray crystallography.

Chemical labeling and imaging of RNA: The Srivatsan group has recently developed a practical chemical labeling method for RNA by using novel toolbox made of azide- and alkyne-modified UTP analogues (Nature Protocols 2012, 7:1097, Chem. Commun., 2012, 48:498). Some of these analogues are readily incorporated into transcribing RNA by endogenous RNA polymerases, which can be posttranscriptionally labeled with a variety of probes by bioorthogonal reactions such as click and Staudinger ligation reactions. The incorporation of azide-modified UTP analogue by endogenous RNA polymerases is the first example of selective labeling of cellular RNA transcripts with azide groups. The selective labeling of RNA with azide has enabled the group to devise a simple method to simultaneously image DNA and RNA synthesis in cells by using click reactions. It is expected that this modular and practical chemical labeling methodology will provide a new platform to study RNA in vitro and in cells (e.g., RNA synthesis, localization and degradation). His group is currently investigating the utility of this method in imaging RNA in live cells and animal models using fluorogenic probes.

Functionalized nucleolipid conjugates: More recently, his group has designed, synthesized and studied the self-assembling properties of fluorescent nucleolipids made of new microenvironment-sensitive nucleoside (benzofuran- and benzothiophene-modified uracil) analogues as head groups and classical long chain hydrocarbons or fatty acids as lipophilic groups. These nucleobase- and nucleoside-lipid conjugates show self-assembling properties assisted by H-bonding, stacking and van der Waals interactions, and have been characterized by light microscopy, SEM, AFM and DLS methods. Currently, these self-assemblies are being utilized as platforms for designing biosensors, biomaterials and scaffolds for nontemplate oligomerization of nucleic acids.
Peptidomimetics and Foldamers

Research in Gopi’s group is mainly focusing on the exploration of naturally occurring non-ribosomal amino acids along with the novel α-, β- and γ-amino acids towards the design of proteolytically stable protein secondary structure mimetics, miniproteins, peptidomimetics and their utilization towards the structure based drug design for protein-protein interactions, protease inhibitors, antibiotics (antimicrobials), self-assembled soft biomaterials such as hydrogels, nanovesicles and nanotubes and exploitation of these soft biomaterials towards biology and material science.

Foldamers: Designing synthetic protein structures using non-natural amino acids has immense importance from the perspective of medicinal chemistry. Significant progress has been achieved in this regard using the oligomers of β- and γ- amino acids and mixed sequences containing α/β and α/γ hybrid peptides. In contrast to the synthetic β- and saturated γ-amino acids, a variety of backbone functionalized γ-amino acids such as α, β-unsaturated γ-amino acids, β-keto-γ-amino acids and β-hydroxy γ-amino acids have been frequently found in many biologically active peptide natural products. In addition to their biological activities, these amino acids also provide a unique opportunity to exploit their functional groups for further derivatization. Inspired by the nature’s selection, Gopi’s group is exploring the utilization of these naturally occurring γ-amino acids along with the α-amino acids to design protein secondary structure mimetics and foldamers. Using these amino acids, various secondary and supersecondary structures such as β-sheets, β-hairpins, helices and multi strand β-sheets have been designed, synthesized and characterized in both solution and single crystals. The structural analogy of these novel hybrid peptides were assessed with the α- and β-peptides.

Gopi’s group is presently investigating the α, γ-hybrid peptide helices designed using helical wheel diagram as inhibitors against the HIV-1 gp41 fusion process as well as P53-hDM2 interactions. The success of this strategy will be further explored for other protein-protein interactions.

Anti-microbial properties and Mechanism of action of α, γ-hybrid peptides: Responding to the emergence of antibiotic resistant infectious microbes, Gopi’s group is exploring proteolytically stable α, γ-hybrid peptides as potential anti-microbial candidates. By taking the guidance from natural anti-microbial peptides (AMPs), Gopi’s group has designed short α, γ-hybrid lipopeptides and evaluated their anti-microbial activities. These short hybrid lipopeptides displayed broad spectrum anti-microbial properties against various bacterial and fungal strains. The mode of action reveals that they bind to the negatively charged outer membrane of the microorganisms and affecting the transmembrane electric potential. Inspired by the broad spectrum anti-microbial properties of short hybrid lipopeptides composed of E-vinyllogous amino acids, Gopi’s group is currently investigating the anti-microbial activities of various short α, γ-hybrid lipopeptides, amphiphilic α, γ-hybrid peptide 12-helices designed from the helical wheel as well as α-hybrid peptide mixed 10/12 helices.
Biomaterials from hybrid peptides: Gopi's group is investigating the influence of amino acid side-chains and conformational rigidity of proteolytically stable hybrid peptides in the supramolecular assembly. Recently, they showed that designed hybrid peptide 12-helices with aromatic amino acids hierarchically assembled into elongated nanotubes in aqueous environment. These nanotubes were further exploited in casting silver nanowires from silver ions. In addition, they also showed the spontaneous self-assembly of conformationally biased -hybrid peptides into stimuli responsive vesicles.

Further, Gopi's group has also reported the amino acid mutated complimentary coiled-coil peptides as mild temperature triggers to release encapsulated molecules from the liposome-coiled-coil nanocomposites. Gopi's group is currently exploring these soft biomaterials as delivery vehicles, hydrogels for tissue engineering and casting metal nanowires for nanodevices.

Developing strategies towards coupling agents free peptide synthesis:
Gopi's group is also involved in developing new strategies for peptide synthesis.

Chemistry and Biology of Reactive Species

Nitrogen, oxygen and sulfur are elements that are indispensible for life as we know it. These elements exist in various oxidation states and nearly each of these redox forms has important physiological roles. Some examples are nitric oxide (NO), superoxide radical anion, hydrogen sulfide (H₂S) and sulfur dioxide (SO₂). These molecules share characteristics such as: being produced within cells; being gaseous, reactive and short lived; and causing macromolecular damage at elevated concentrations. However, biological studies that need to be conducted with such species require the use of precursors as the gases themselves are cumbersome to use. Tremendous progress in the understanding of the biological effects of nitric oxide is in part attributable to the availability of a large number of precursors of nitric oxide. However, the number of reliable surrogates for the other gaseous members of this class is few.
Harinath Chakrapani is designing and synthesizing organic compounds that can serve as reliable surrogates of such physiologically relevant reactive species. His group has developed novel sources of sulfur dioxide with half-lives ranging from a few minutes to several hours. Sulfur dioxide also has been extensively used as an antibacterial agent. These properties of sulfur dioxide might be exploited to develop new therapeutic agents. Several compounds prepared in his laboratory have shown potency against *Mycobacterium tuberculosis* comparable with a clinically used agent, isoniazid. His group has also developed benzosultines as donors of sulfur dioxide with tuneable half-lives. These compounds might find applications as tools for molecular biology studies.

Nearly all organisms inadvertently produce superoxide O_2^- by 1-electron transfer to oxygen during respiration. O_2^- is subsequently converted to hydrogen peroxide H_2O_2, which through Fenton reaction generates the highly reactive OH. Together, these reactive oxygen species (ROS) can damage vital cellular components and are hence deployed by the immune system to counter infectious pathogens. Although studies into the relationship between ROS and bacteria have been studied for several decades, a clear picture has not emerged. For example, recent studies have shown that antibiotics exert their lethality through enhancement of ROS. Several recent studies have shown that ROS can sensitize infectious bacteria to clinical antibiotics suggesting the possible therapeutic utility for ROS. His group has developed a hydroquinone-based scaffold for controlled generation of ROS upon dissolution in buffer. These compounds were found to generate ROS reliably and in excellent yield. A number of these compounds were found to inhibit *Mycobacterium tuberculosis*.

Using this scaffold, his group has also made an enzyme activated ROS generator. This small molecule generates ROS only when triggered by a bacterial enzyme and his group has demonstrated the capability of this compound to predictably enhance intracellular superoxide radical in a model bacterium. Spatiotemporal control over ROS generation offered by this compound should help better understand stress responses in bacteria to increased ROS.

The structural aspects of the keto-enol equilibrium has also been studied by his group and they find that the propensity of hydroquinones to enolize determines ROS generating capability thus offering scope for tunable ROS generation.

Lastly, inspired by natural products, a library of phenanthidine-5,7,12(6H)-triones was prepared. A number of these compounds were found to undergo bioreduction to generate ROS. The group next tested the ability of these compounds to inhibit growth of the pathogen *Staphylococcus aureus* (*S. aureus*) and found several excellent inhibitors of this bacterium. This pathogen has acquired resistance to several antibiotics including the methicillin-based drugs. Methicillin-resistant *S. aureus* (MRSA) strains are fast becoming resistant to other frontline antibiotics as well. The group showed that the lead compound
generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. This compound was found to have potent in vitro growth inhibitory activity against numerous patient-derived clinical strains at levels comparable with Vancomycin, the drug of last resort for such infections.

In addition, new strategies for site-directed delivery of nitric oxide via bioreductively-activated prodrugs and donors activated by hydrogen peroxide have been developed. Bioreductively activated NO donors were found to have excellent cancer growth inhibitory activity. The possible applications including using these NO donors as tools to overcome drug resistance as well as targeting hypoxic tumours is currently being explored.

Hydrogen peroxide activated NO donors present opportunities to study effects of NO during immune response. Both ROS and RNS are generated during immune response to counter infectious pathogens, presumably due to their ability to synergize leading to increased damaging effects. However, due to its antioxidant capability, NO has also been implicated in protecting bacteria from oxidative stress and may hence contribute to bacterial drug resistance.

In addition to developing new donors of reactive species, Harinath Chakrapani’s group is also working on new prodrug activation methodologies. Recently, his group has developed a thiol-selective 2-methyl-3-phenacrylate scaffold with spatiotemporal control over delivery of a bioactive cargo. The half-lives of decomposition could be tuned from 30 min to 1 day and the scaffold’s utility in thiol-inducible fluorophore release in cell-free as well as within cells was demonstrated.

Glyco-nanobiotechnology

Carbohydrates play an important role in many biological systems by virtue of their lectins which recognize them. Carbohydrate-lectin interactions are involved in expansively diverse biological processes which include embryonic development, intracellular trafficking, cell-cell recognition, cell activation, cell adhesion, cell homing, endocytosis, phagocytosis, inflammation, tumor cell metastasis, and apoptosis. One main drawback for investigating carbohydrate-lectin interactions is their weak affinity to bind, which will require enhanced tools to analyze carbohydrate-lectin interplay. So far, two promising strategies have emerged from our studies: (1) designing multivalent glyco-probes using cyclodextrin templates and their utilization towards amplifying carbohydrate mediated targeting, self-assembly, and remote actuation of particles to treat tumors in cancer models and (2) developing biomimetic carbohydrate strategies to modulate carbohydrate-protein interactions.

Designing multivalent glyco-probes using cyclodextrin templates and their utilization towards amplifying carbohydrate mediated targeting, self-assembly, and remote actuation of particles to treat tumors in cancer models.

Designing multivalent template structures have immense importance not only to amplify the carbohydrate-protein interactions but also from the perspective of translational chemistry. Significant progress has been achieved in this regard using glyconanoparticles, glycodendrimers and glycopolymers. However, other important issues regarding the preparation of multivalent carbohydrates are related to the orientation, spacing and local concentration of the carbohydrates with respect to external stimuli. Therefore, it is important to form a general scaffold which is facile,
robust, presents tuneable symmetry and exhibits optical and electrochemical properties to develop a direct probing system. Inspired by the large number of supramolecular assembly of adamantoyl/β-cyclodextrin associated complexes, Dr. Raghavendra Kikkeri’s group explored poly-glycosyl β-cyclodextrin probes in the synthesis of glyconanoparticles, metallo-glycodenderimers, phototuneable glyoclusters, glycopeptides, and glycoproteins. Using the multivalent nature of β-cyclodextrin, high-throughput microarrays and diagnostic kits were designed. Finally, β-cyclodextrins were expressed on cell surfaces using bio-orthogonal reaction to tune the behaviour and localization of cells. Currently, work on β-cyclodextrin-mediated remote actuation of particles to treat tumors is in progress.

Biomimetic carbohydrates to modulate carbohydrate-protein interactions

Glycan-lectin interactions are important events in glycobiology. Numerous glycans have been synthesised and specific lectin interactions with many of these synthetic tools have been established. Despite the availability of a wide range of monosaccharide substrates, particular lectin mediated interactions require other tools such as multivalent carbohydrate displays or glycoprotein conjugation to improve binding. Recently, biomimetic syntheses of glycans are gaining momentum, primarily due to the ease in which one can synthesize a variety of novel glycans that may selectively enhance biomolecular interactions compared to natural ligands. As a prototype, Kikkeri group designed and synthesized a library of sialyl-mimetic glycans, which are known to bind a large pool of lectins such as C-type and I-type lectins. They anticipate that these synthetic analogs will induce strong binding and high specificity within specific subsets of lectins. Currently, the group is investigating carbohydrate-protein interactions and their potential applications as inhibitors and/or as promoters in specific biological recognition processes.

Chemical Nanobiotechnology

Cancer is one of the most devastating diseases in the world. Traditional cancer therapy uses highly cytotoxic drugs as chemotherapy alone or in combination with radiation therapy. However, most tumors can bypass the effect of monotherapy by developing intrinsic or acquired resistance mechanisms. Intrinsic resistance mechanism can pre-exist in the tumor through activation of redundant signalling pathways or overexpressing drug efflux pumps or mutational activation of downstream signalling. On the other hand, acquired resistance can develop during the treatment of tumor by mutations of the target or upregulation of other signalling pathways or downregulation of tumor suppressor proteins. It is now increasingly clear that none of these resistance developing
 signaling pathways operate in isolation. Instead, each is influenced by crosstalk with other pathways. Moreover, complex positive- and negative-feedback loops serve to amplify or damp the signal fluxing through each of these pathways. As a result, signals (extracellular or intracellular) propagate through a tangled network of interconnecting organelles and cascades rather than through independent linear route. Hence to overcome this drug resistance in cancer Sudipta Basu’s group proposes mechanism driven targeting of multiple organelles and multiple signaling hubs by merging chemical biology and nanotechnology to develop chemical nanobiotechnology tools.

Targeting multiple signalling pathways to overcome drug resistance: Rational combinatorial polypharmacy has emerged as an interesting strategy to target cancer drug resistance in the post-genomic era. However, the foremost shortcoming of current cancer chemotherapy is the diffusion of drug cocktails non-specifically leading to escalated toxicity of the drug combinations. Moreover, the drugs face the challenge to overcome biological barriers to reach the tumor target in right concentrations and combinations to offer effective therapeutic efficacy. To address these, Basu’s group has developed a sub 200 nm particles from biocompatible, biodegradable vitamin D3 which can contain rational combination of dual drugs (PI103 and cisplatin or doxorubicin or proflavine) to target phosphatidylinositol-3-kinase (PI3K) signalling and DNA damage. The size, shape and morphology of these dual drug containing vitamin D3 nanoparticles were characterized by DLS, FESEM, AFM and TEM. The nanoparticles released the dual drugs in high quantity at pH = 5.5 compared to pH = 7.4 in a slow and sustained manner over 72h with stability over 15 days at 37°C as well as 4°C. These dual drug loaded nanoparticles induced increased cell death in human hepatocellular carcinoma, Hep3B cells at 24h compared to monotherapy; moreover, they were effective against cisplatin-resistant cells (Hep3B-R) as well. VitD3-PI103-CDDP-NP and vitD3-PI103-Dox-NP showed cytotoxicity by inducing apoptosis through DNA damage. Furthermore, vitD3-PI103-CDDP-NP showed much improved efficacy in 5-fluorouracil (5-FU) resistant Hep3B-5FU-R cells also compared to 5-FU. Finally, vitD3-PI103-Proflavine-NP internalized into the Hep3B-R cells much faster (within 3 minutes) compared to Hep3B cells visualized by fluorescent microscopy. Hence, these dual drug loaded nanoparticles can successfully overcome the trauma of drug resistance and has potential to be translated into the clinics for improved cancer therapeutics.

Targeting multiple organelles: In recent years, mitochondrion has emerged as an important alternative target in cancer therapeutics due to its diverse functions including cellular energy production by generating ATP via respiration, regulating danger signaling and containing mitochondrial DNA (mtDNA) as genomic material. Although, specific targeting of mitochondria emerged as an interesting strategy to alter the bioenergetics of cancer cells, mitochondria depend on the nucleus and other cellular organelles for most of their proteins and lipids as well as their cellular functions. The group hypothesized that nanoparticle mediated simultaneous subcellular targeting of mitochondria and nucleus would lead to more effective therapeutics in cancer. Aiming at this goal, They have chosen α-tocopherylsuccinate (α-TOS) as mitochondria targeting drug, cisplatin and doxorubicin as different clinically approved nucleus DNA damaging drugs and paclitaxel as microtubule binding drug to inhibit cell division. As a proof of concept the group has directly conjugated α-TOS with cisplatin, doxorubicin and paclitaxel without any additional linker. They engineered sub 200 nm particles from these dual drug conjugates which were endocytosed into the acidic lysosomal compartments of HeLa cervical cancer cells temporally and released the dual drugs in a slow and sustained manner to target mitochondria and nucleus simultaneously. These dual drug conjugated nanoparticles showed cytotoxicity by inducing apoptosis through damaging mitochondrial outer membrane (MOM) to release cytochrome c as well as damaging nuclear DNA and tubulin to arrest the cell cycle. These dual drug conjugated nanoparticles have potential to simultaneous targeting of multiple subcellular organelles to escalate the therapeutic outcomes in modern cancer treatment.

Future direction: The Basu group has successfully demonstrated that nanoparticle mediated targeting of multiple signaling pathways can overcome drug resistance in cancer. Currently they are developing tools and techniques for organelle specific targeting of signaling pathways as well as targeting crosstalk between organelles to decipher their importance in disease state like cancer.
Chemical Biology: Ion Channels, Lipids, and Bioconjugation

There are three major focal points of interest of Jeet Kalia’s chemical biology-centric research programme: ion channel biology, lipid biology, and bioconjugation. All projects in the laboratory are inherently interdisciplinary and combine disciplines as wide-ranging as electrophysiology, molecular biology, protein expression and purification, protein chemistry and organic synthesis.

A major focus of research in the Kalia laboratory is to elucidate the molecular basis of how ion channel proteins open and close in response to stimuli such as voltage, temperature, chemical ligands and mechanical stress. These studies contribute to understanding how ion channel proteins endow organisms with vital life-sustaining traits such as cognition, pain-sensing, temperature-sensing and touch sensation. To achieve this goal, Kalia’s group performs detailed structure-function based studies on ion channel proteins involving extensive site-directed mutagenesis of channels followed by the electrophysiological characterization of the resulting channel variants. Additionally, the group is developing specific small molecule and peptide modulators of ion channels that can be used as tools to elucidate the mechanism of ion channel gating and also may have therapeutic potential. For example, a recently published study by the Kalia group performed in collaboration with the Johns Hopkins and Emory Universities, resulted in the discovery of a novel anti-epileptic small molecule targeting voltage-activated sodium channels Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. *ACS Chem. Biol.* 9: 1204-1212. Moreover, the group has also contributed to a review on peptide toxins that modulate ion channel function.

The Kalia laboratory is currently focusing on two projects on ion channels. One of these projects focuses on the Transient Receptor Potential (TRP) tetrameric cation channels that play important roles in several physiological processes such as temperature-sensing, mechanical stress-sensing and pain-sensing. The mechanistic underpinnings of how these channels are activated by such a diverse range of stimuli are extremely poorly understood. The recent discovery of a peptide toxin, the double-knot toxin (DkTx), produced by the Chinese bird spider, that specifically activates the TRP channel, TRPV1, has opened doors for the development of this toxin as a pharmacological tool for elucidating the gating mechanism of TRPV1 (Figure above). The Kalia laboratory has developed a high-yielding *E. coli* expression system for recombinant production of this toxin and is performing mechanistic investigations on DkTx-activation of TRPV1 by performing electrophysiological studies on channels expressed heterologously in *Xenopus laevis* oocytes and HEK293 mammalian cells.

Another ion channel-centric project in the laboratory focuses on the voltage-activated potassium (Kv) channels. Targeting Kv channels is a promising strategy for the therapy of multiple sclerosis and neuromuscular disorders such as botulism and Lambert-Eaton myasthenic syndrome. Indeed, the Kv channel inhibitor, 4-aminopyridine was recently approved by the Food and Drug Administration, U.S.A., for the treatment of multiple sclerosis. Additionally, the Kv channel-inhibitor, guanidine hydrochloride is sold as a prescription drug for the symptomatic treatment of Lambert-Eaton myasthenic syndrome. A major limitation of the therapeutic use of these compounds is the harmful side effects that accompany their administration. To overcome these detrimental side effects, the Kalia laboratory is designing analogs of aminopyridines and guanidines that may exhibit high potency for Kv channels, enabling administration at low dosage levels. Additionally, since the binding site of guanidine is adjacent but not identical to the binding sites of other Kv channel inhibitors such as tetraalkylamines and aminopyridines, compounds containing guanidine on one end, and aminopyridines or tetraalkylamines on the other end are also being synthesized (Scheme shown) in the hope of achieving potent Kv channel inhibition.

In addition to ion channel biology, the Kalia research group is developing new approaches for studying the biology of lipids. In contrast to protein and nucleic acid research, lipid biology has lagged behind due to the lack of robust and
In addition to ion channel biology, the Kalia research group is developing new approaches for studying the biology of transient receptor potential (TRP) tetrameric cation channels that play important roles in several physiological processes. The Kalia laboratory has developed a high-yielding method for the peptide toxins that modulate ion channel function. Recent breakthroughs in chemical biology have enabled the development of selective small molecule and peptide modulators of these channels followed by the electrophysiological characterization of the resulting channel variants. Additionally, the group is designing analogs of aminopyridines and guanidines that may exhibit high potency for Kv channels, enabling designing new (macro) molecules for applications in the area of Chemical Biology/Physiology and Optical Molecular Imaging. In general, his research focuses on the following areas:

Chemical Physiology/Optical Molecular Imaging

Britto's group research interest is designing new (macro) molecules for applications in the area of Chemical Biology/Physiology and Optical Molecular Imaging. In general, his research focuses on the following areas:

In Vivo Imaging of Enzyme Activity: Enzymes are fundamental to all biological phenomena. Without enzyme-catalyzed biochemical reactions, no living forms can survive. No wonder, from development to differentiation, from metabolism to physiology and from cell division to cell death, all biological processes are dependent on the functions of "active" enzymes. In spite of decades of research on enzymes, in vivo monitoring of an enzyme function at single molecule resolution with very high substrate specificity is still a technical challenge. While enzymes have been studied at physiological concentrations and in both purified and in cell/tissue lysates, no technique is available to monitor the function of "active" enzymes in their native conditions in the milieu of all other components of living cells with very high resolution and exquisite specificity. Such studies will help us understand precise chemistry behind enzyme-substrate interactions and thereby to study regulation of complex biochemical reactions under various conditions. Technology to study enzyme function in vivo at very high temporal resolution and substrate specificity will have powerful tools to study lipids in cells. Unlike proteins, lipids are not genetically encoded, thereby precluding the use of genetics-based approaches that have revolutionized protein and nucleic acid biology. Modern mass spectrometry-based lipidomics has contributed significantly through precise estimation of the lipid compositions of cells. Nevertheless, mere quantification of lipid species is insufficient to elucidate their biological function. Rather, approaches for detailed in vivo functional studies of lipids are required. To address the urgent unmet requirement of tools for studying lipids in cells, the Kalia laboratory aims to employ metabolic labelling for the cellular incorporation of non-natural lipids that effectively mimic native lipids but have elaborated function (as shown in the Figure). These approaches will be utilized to incorporate lipid analogs in mammalian cells and *Xenopus laevis* oocytes which can serve as lipid “mutants” to interrogate the roles of lipids in membrane protein function. Such approaches will set the stage for applications in various other aspects of lipid and membrane biology such as the cell biology of lipids and membrane proteomics.

The third major focus of the Kalia laboratory is on bioconjugation. Recent breakthroughs in chemical biology have enabled the development of selective methods of covalently modifying proteins. These bioconjugation approaches have been utilized for a host of applications including imaging, disease diagnostic applications, and also for the discovery of interacting partners of protein(s) of interest in cells. Despite all this progress, two major limitations remain: 1) Several existing bioconjugation linkages are susceptible to hydrolysis and, 2) The rates of formation of bioconjugates are too slow to enable precise spatiotemporal applications in cells. To address these limitations, the Kalia laboratory is developing new methods of bioconjugation that proceed rapidly and result in stable linkages.
immense application to understand diseases and also to test the efficiency of targeted drugs.

Activity-based Protein Profiling Technology: Standard genomic and proteomic technologies fail to address numerous post-translational forms of protein regulation controlling molecular and cellular function. Activity-based proteomics study addresses the limitations of standard genomic and proteomics methods. We are interested in developing new activity based probes for following applications: (i) Identification of novel drug targets; (ii) Determination of target selectivity of drug candidates in vitro, in celluле, ex vivo and in vivo (iii) Assessment of efficacy and toxicity for lead compounds & established drugs

Synthetic Virus Particles: Self-assembly of protein molecules to form beautiful nanostructures are exemplified in the nature by the presence of various types of viruses, which differ by their size and shape. Nature has worked its way through millions of years to come up with these aesthetic particles. Inspired by this, our group interest is to modify structure of globular proteins that would lead to self-assembly of protein molecules to make synthetic virus particles. The structure property relationship studies of this macromolecular entity should shed light on design principles of artificial virus particles.

Synthesis, Self-Assembly and Sensing

The research interest of Pinaki Talukdar’s laboratory is to design of molecules for various functional applications. Targeted design of molecules is essential in diverse fields of research e.g. total synthesis, medicinal chemistry, chemical biology, supramolecular chemistry, etc. Present research of the laboratory covers areas synthesis, self-assembly and sensing. Under the sub area of synthetic chemistry, the research is focused in the development of synthetic methodologies. Further applications of these strategies are aimed in the synthesis of natural and non-natural product analogs. Beyond these, creation of molecules for supramolecular chemistry and sensing applications are also covered in the laboratory.

Recently, the Talukdar lab has exploited the Cu(I) catalyzed aldehyde-amine-alkyne coupling reaction as an efficient methodology for the construction of (2S,3R)-α-amino alcohol derivatives. Reactions of (R)-glyceraldehyde acetonide, dibenzylamine and terminal alkyne provided the amino alcohol with excellent diastereoselectivity. The methodology was applied further in the synthesis of various natural products and related libraries of molecules. Based on the methodology, they have carried out synthesis (+)-β-conhydrine, related pipiridine and pyrrolidine analogues. The utility of the methodology was also demonstrated by the stereoselective synthesis of valinocin A and (2S,3R)-3-amino-2-hydroxydecanoic acid ((2S,3R)-AHDA). Another application of Cu(I) catalyzed reactions was addressed via the development of new reaction of the reactive ketenimine intermediate. In the presence of a tethered amino group, a 1,3-migration reaction was observed leading to the formation of acrylamidines. The group has also developed an enantiodivergent synthesis of both enantiomers of δ-unsaturated γ-amino acids. In the area of self-assembly, the group’s research is focused in the development of ion channels and transporters. In recent times, they are working toward designs for artificial supramolecular ion channels and pores, and to mimic the functions their natural siblings. They have constructed unimolecular ion channels based on cyclo- oligo-glucosamines for tuning of ion transport activity. The group has also reported mannitol based rosette ion channels. These channels allow selective anion
transport via a hopping mechanism of ion from one rosette to the next. In the field of sensing, the research focus is on selective detection of species that are of either biological or environmental interests. These goals are addressed via the development of fluorescent probes. The Talukdar laboratory has developed diverse fluorescent probes for the sensing of thiols (e.g., biothiols, aryl thiols, H₂S), anions (e.g., fluoride ion), cations (e.g., cations), etc. These probes are useful for rapid, selective and sensitive detection of respective analytes, and applicable for live cell imaging studies.

The future direction of the research will be focused in the fields of self-assembly and sensing. Various designs will be aimed in the design of functional supramolecules e.g. ion channels and transporters. One such strategy is proposed for modulating gating and selectivity of ion channels dictated by an external ligand. In 2000, Bayley and coworkers applied β-cyclodextrin derivatives as adapters for decreasing pore size of the α-hemolysin protein. Depending on the nature of the functional group attached to the β-cyclodextrin, the ion selectivity was also manipulated. We were encouraged by the strategy and propose to design synthetic ion channels which are expected to display gated opening by external ligands. The design will be focused to manipulate the ion selectivity by the nature of the external ligand. The second strategy in the supramolecular ion channels will be focused to construct stable nanotubular structures of different inner diameters. Based on the choice of monomer unit, the constructed nanotube will either allow the passage of only ions (inner diameter = 0.3 – 0.5 nm) or small molecules (inner diameter = 1.2 – 2.0 nm). This large nanotubular structure will be applied for molecular recognition studies, and carry out reactions in the confined environment. Therefore, based on the design, these self-assembled structures can function as either channel or pore in the transmembrane environment. Artificial ion channels will be studied for evaluating ion selectivity and results will be essential to understand fundamental knowledge on noncovalent interactions. The larger pore structures on the other hand, will be applied for sensing and delivery applications.

In the area of sensing, the group’s aim will be focused in the design of cascade reaction based fluorescent probes. Such a strategy will be essential to address water solubility, membrane permeability, organelle specificity, reactivity and selectivity during sensing. In continuation with the group’s recent work, goals are set to develop fluorescent probes for thiols (biothiols, H₂S, etc.), anions and metal ions of biological interests.
Chemistry of Saccharides

Hotha’s research work is on development of methods for the chemical glycosylation and on their application into the synthesis of complex carbohydrate epitopes present on the cell surface of infectious microbes. Hotha’s group is also focussed on the utility of \(\text{1,2-tetrazine} \) for the controlled synthesis of ternary and quaternary conjugates which will have a lot of ramifications. In yet another direction, Dr. Hotha is also heavily involved in the making of TLC-MS interface machine and several new analytical instruments.

Non-invasive Diagnostics. Hotha’s group is currently interested in the chemistry of furanosides wherein they have developed methods for the stereoselective synthesis of 1,2- \(\text{trans} \) and 1,2- \(\text{cis} \) furanoside by taking cues from the mycobacteriology. Quite recently, they have shown that less reactive glycosyl donors can be converted to more reactive glycosyl donors and Hotha’s group showed its utility in the synthesis of arabinan present in the mycobacterial cell surface. Hotha and his co-workers are now trying to develop a diagnostic kit for the non-invasive detection of infectious bacteria in extra-pulmonary and CNS areas by exploiting glycolipid-glycolipid interactions.

Bioconjugation Methods. The utility of \(\text{1,2-tetrazine} \) for the synthesis of ternary conjugates by Hotha’s group is one of the very first methods of their synthesis. \(\text{1,2-tetrazine} \) offers differential SNAr reaction by the use of mercaptans and then the tetrazine nucleus can be subjected to the inverse electron demand Diels Alder reaction to get the ternary conjugates. Hotha showed that any combination of molecules can be subjected to this protocol and this approach is currently investigated in his group for probing co-operativity in lectin binding and protein-protein interactions.

TLC-MS Interface. Chemists use many tools for tracking the progress of reactions that they carry-out. One of the most versatile and ubiquitously used methods is the thin layer chromatography which is more popularly known as TLC. TLC examination gives the information on the progress of the reaction based on hydrophobicity of molecules and it does not give any kind of characterization data or confirmation about the chemical identity of the molecule of interest. Dr. Hotha and his team are currently developing an analytical tool which would give mass spectrum when coupled with a suitable mass spectrometer. The device will have two tubes out of which one takes the solvent from the reservoir and wets the sample of interest and the tube will then extract it from the TLC-plate and injects into the mass spectrometer. The necessary software and printed circuit board are developed and the probe head which actually houses both tubes is currently undergoing the fine tuning. The TLC-MS interface can also be used for obtaining samples directly from chromatographic plate so that the analyte can be subjected to other spectroscopic techniques as well. The device is named as Software Assisted Direct Extraction & Sampling Interface (SWADESI).

Metal Catalyzed C-H Bond Activation

The development of highly efficient, easily accessible and environmentally friendly method for constructing carbon-carbon and carbon-hetero bonds in a highly atom economical manner is highly important in organic synthesis. Metal-catalyzed reactions have been well-recognized as a powerful synthetic tool to construct carbon-carbon and carbon-hetero bonds in organic synthesis. M. Jeganmohan’s group is mainly focused on the development of new synthetic methodologies by using transition metal complexes as catalysts in organic
transformation. Jeganmohan’s group is currently working on a ruthenium-catalyzed C-H functionalization of aromatics, heteroaromatics, alkenes and alkynes.

Construction of chemical bonds via metal-catalyzed chelation-assisted C-H bond activation of aromatics, heteroaromatics and alkenes followed by functionalization with nucleophiles or electrophiles is a powerful tool in organic synthesis. Palladium, rhodium and ruthenium complexes are widely used as catalysts in the C-H bond activation reaction. Among them, a less expensive ruthenium complex has gained tremendous attention recently, due to their remarkable reactivity, compatibility and selectivity. Interestingly, most of the ruthenium-catalyzed C-H bond activation reaction can be conducted under an air atmosphere. In 2011, Jeganmohan’s group has demonstrated a ruthenium-catalyzed ortho alkenylation of aromatic and heteroaromatic ketones with olefins in a highly regio- and stereoselective manner. Later, this alkenylation reaction was successfully extended into aromatic aldehydes, esters and carbamates. In these reactions, 1,2-disubstituted alkenes were synthesized in a highly stereoselective manner. Later, his group has reported a ruthenium-catalyzed hydroarylation of aromatic carbamates with alkynes providing trisubstituted alkenes via a deprotonation metalation pathway. Further, the hydroarylation reaction was successfully extended with anilides and aromatic sulfoxides. Subsequently, his group has demonstrated a ruthenium-catalyzed ortho benzylation, acetoxylation and arylation of aromatic amides and anilides with organic carboxylic acids or aromatic and alkenyl boronic acids.

Apart from the ortho C-H bond activation, his group has described an unprecedented ruthenium-catalyzed intramolecular halogenation at the meta and ortho carbon position of O-methylbenzohydroximoyl halides under the base and oxidant free conditions in a highly regioselective manner.

In the meantime, his group has developed an efficient protocol to synthesize various heterocyclic molecules via a ruthenium-catalyzed oxidative cyclization of heteroatom substituted aromatics with carbon-carbon π-components. By employing this method, various heterocyclic molecules such as isocoumarins, indenols, isoquinolines, isoquinolones, α-pyrone, 2-quinolinones, isoindolinones and phenanthridinones can be prepared in good to excellent yields.

Subsequently, his group also demonstrated a metal-free aerobic oxidative dehydrogenative α-arylation at the sp³ C-H bond of substituted ketones with aromatics or heteroaromatics in the presence of K₂S₂O₈ giving hindered symmetrical and unsymmetrical benzopinacolone derivatives under the mild reaction conditions. On the other hand, benzyl ketones reacted with aromatics providing α-diarylated ketones through carbon-carbon bond cleavage. The reaction was carried out at room temperature under an air atmosphere. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved.

Jeganmohan’s group has described various synthetic methodologies for synthesizing disubstituted alkenes, trisubstituted alkenes, halo substituted aromatic nitriles, ortho benzyloxylated and arylated aromatics and heterocyclic molecules such as indenols, isocoumarins, fluorenones, substituted azoles, isoquinolones and isoquinolines. These methodologies would be very useful for synthesizing various natural products, biologically active molecules, polymers
and materials. In the near future, his group would like to focus on the meta selective C-H bond functionalization of aromatics and three component assembling of substituted aromatics with carbon-carbon σ-components and electrophiles or nucleophiles via C-H bond activation in the presence of ruthenium catalysts. In the meantime, a proper effort will be devoted to synthesize biologically active molecules and natural products by employing his methodology as a key step and an enantioselective synthesis of organic molecules by using chiral ruthenium complexes as catalysts.

Strategies for Organic Synthesis and Catalysis

Ramakrishna G. Bhat’s research group is involved in conducting research in the field of organic synthesis with a focus on green asymmetric catalytic synthesis and C-H functionalization, with an emphasis on the development of new synthetic methods that facilitate the construction of complex and bioactive molecules.

Recently, RGB research group has developed novel and practical protocols for the synthesis of cis-2,3-disubstituted piperidine derivatives, α,β-unsaturated acids/esters and useful strategy for N-deacetylation. (+)-(2S,3S)-CP-99,994 is a potent antagonist of substance P NK-1 receptor developed by Pfizer. cis-2,3-stereochemistry is known to be very essential for this activity. Methods for introducing different substituents at C-2 at late stage have been very difficult and not well explored in the literature. Owing to the importance of the molecule, RGB group developed a very simple and efficient stereoselective approach to cis-2,3-disubstituted piperidines via the reduction of N-acyliminium ion intermediates. Starting from commercially available ornithine, corresponding amino ketones have been prepared using aryl magnesium bromides. Treatment of this with trimethylsilyl triflate and triethyl silane resulted in intermediates. Starting from commercially available ornithine, corresponding amino ketones have been prepared using aryl magnesium bromides. Treatment of this with trimethylsilyl triflate and triethyl silane resulted in various compounds. Similarly, α,β-unsaturated esters have been utilized as versatile building blocks in organic synthesis and find significant use in industry. Unsaturated esters such as cinnamate esters have been used as commercial sun screen filters. Most of the methods for the synthesis of α,β-unsaturated acids/esters are non-catalytic and less stereoselective. Environmentally benign and sustainable catalytic protocols with milder conditions which can tolerate a wide variety of functionality are highly desirable.

RGB research group developed a novel, practical and convenient catalytic protocol comprising FeCl₃·6H₂O and H₂O (1 equiv) in CH₃NO₂ for the rapid synthesis of α, β-unsaturated carboxylic acids with high E-stereoselectivity both.
under microwave and conventional heating conditions. This powerful approach efficiently demonstrated the utility of biomass derived aldehydes to build chemical agents as fuel additives. The method proved to be scalable to gram scale synthesis.

They explored for the first time controlled monoelectrophilic reactivity of alkylidene Meldrum’s Acids with water using Lewis acid to synthesize α,β-unsaturated carboxylic acids with high stereoselectivity. β-Methoxycinnamates are commonly used as sunscreen chemical filters in industry and octyl methoxycinnamate (Octinoxate, OMC) is a common ingredient in most sunscreen lotions. This chemical, of commercial significance, has been the target of synthesis by various routes.

Having explored the synthesis of α,β-unsaturated carboxylic acids, the RGB research group has developed a facile and convenient synthesis of α,β-unsaturated esters by exploring the reactivity of alkylidene derivatives of Meldrum’s Acid with different alcohols. Protocol uses a catalytic amount of FeCl$_3\cdot$6H$_2$O (0.001 – 0.005 equiv) with alcohols (1 equiv) in CH$_2$NO$_2$ followed by piperidine. A variety of α,β-unsaturated esters has been synthesized with high E-stereoselectivity in good to excellent yields.

The application of this methodology has been demonstrated by gram scale synthesis of octinoxate, a sunscreen agent, and other β-methoxycinnamate esters. Reactions are neat and by-products formed are volatile. The novel protocol described for the selective esterification and decarboxylation uses very low catalyst loading (0.001 – 0.005 equiv, 0.1-0.5 mol%). This methodology provides an easy access to a range of α,β-unsaturated esters, including compounds of high industrial value, and on a gram scale.

Alongside, the RGB research group has been working on metal mediated strategies.

N-deacetylation usually needs harsher conditions and most of the reaction conditions are not suitable for sensitive substrates that are prone to racemization. A mild and efficient N-deacetylation using the Schwartz reagent at room temperature in rapid time has been developed (Org. Biomol. Chem. 2014, 12, 261-264).

This N-deacetylation protocol is chemoselective and conditions did not induce any epimerization at chiral amino centre. Mild condition enables the orthogonal N-deacetylation in presence of some of the common protecting groups (e.g., Boc, Fmoc, Cbz, Ts). The deprotection conditions did not induce any epimerization at chiral amino centre. Mild reaction condition, simple workup procedure provides a platform for the N-deacetylation without the use of any base or acid.

Currently the lab is focusing on the quinine/Cinchona catalyzed asymmetric reactions and thiourea derived organocatalysis. Thrust is on searching a) alternative catalysts, b) alternative synthetic strategies and methodologies for green asymmetric catalysis.

Similarly, novel reactions that can selectively functionalize C-H bonds are of great interest to the chemical community as they offer novel and efficient strategies for the organic synthesis. C-H functionalization is a very useful strategy and molecules can be modified at the late stage. RGB research group is concentrating their efforts on the metal carbenoid asymmetric intermolecular C-H functionalization using non toxic early transition metals/non-toxic metals at ambient conditions. Some of these strategies will be employed for the enantioselective synthesis of bioactive natural products and inhibitors of PI-3/Aurora Kinases and proteases in future.

Natural Products Synthesis and Catalysis

Natural products are benchmark for discovery of many drugs and currently one third of them are being used as drugs. Many steps involved in several classical total syntheses often make the synthetic routes economically unviable for industrial-scale processes. Synthetic organic chemists are therefore now using their savoir faire to invent short, practical
by dehydrogenates coupling methods to approach key building blocks in absence of hazardous stoichiometric reagents and activators without generation of any waste. GnanaPrakasam’s research group is also developing sustainable and efficient methods for the synthesis of chiral amines and bioactive heterocyclic compounds that are widely used in chemical industry and in natural products synthesis, via enantioselective amination by employing chiral cooperative metal catalyst. GnanaPrakasam’s research group is also exploring use of flow techniques for metal catalyzed organic transformations of industrial importance. Research on catalytic fluorination of various activated/non-activated aromatic and non-aromatic compounds using cooperative metal catalyst, non-hazardous and inexpensive fluorinating agents are also focused in his research groups.

B. Inorganic Chemistry, Catalysis and MOFs

Macrocycles, Antiaromaticity and Noncovalent Interactions

V. G. Anand’s research is focused on the synthesis of stable and novel antiaromatic macrocycles. Aromaticity and antiaromaticity are intriguing offshoots of π delocalization in cyclic conjugated systems. Their electronic effects and structural features are interdependent and crucial to conjugated macrocycles. 18π porphyrin and 20π isophlorin are striking examples of cyclic conjugated systems with structural features akin to annulenes and contrasting ring current effects. 4nπ macrocycles can react quickly to lose their antiaromatic character. The isophlorin-porphyrin redox couple further illustrates the unstable nature of isophlorin relative to porphyrin under ambient conditions. Interestingly, steric hindrance favors macrocycles to undergo structure induced loss of π delocalization. Giant porphyrinoids are well studied examples for macrocycles which adopt figure of eight conformations. Such non-planar cyclic conjugated systems lack ring current effects and are considered to be non-aromatic in nature. Relative to aromatic systems, the experimental evidence reported for antiaromaticity is found to be far less than satisfactory. There are very limited reports to bridge theoretical predictions with experimental data, particularly for large antiaromatic systems. In this context, synthesis of stable quintessential planar 4nπ molecules is crucial not only to understand the electronic effects of π conjugation but also imperative to the development of novel materials for applications in molecular electronics.

Isophlorin represents fused conjugated networks of annulene and porphyrin. It is derived either by reduction of a porphyrin copper complex or by two electron reduction of N,N′,N″,N‴-tetramethyl-octaethylporphyrin dication. It approach for natural-product syntheses with minimal impact on the environment. Therefore, the discovery of new catalytic reactions with sustainability is being required for the current synthetic processes.

Gnanaprakasam’s research group is developing novel, efficient and sustainable route to synthesize natural products of challenging structures with intriguing biological activities. Towards these, his research group is focusing on developing new catalytic reactions using cooperative metal catalyst for stereoselective C-C, C-N and C-O bond formation by domino/tandem fashion or...
can rapidly transform itself into aromatic 18π system due to the fast conversion of two of its four cyclic amines to imines. Attempts to make isophlorin like macrocycles, have yielded only tetraethia/oxa/selena porphyrin dications (as their perchlorate salts). Vogel and co-workers were successful at characterization of tetraoxaisophlorin in solution state, but x-ray crystallographic analysis was less precise due to static and possible dynamic disorders. For the first time, synthesis, isolation and characterization of isophlorins as neutral and stable species was successfully achieved by V.G. Anand's group. The replacement of pyrrole rings by furan and thiophene have yielded three different types of stable 20π isophlorins 21,22,23,24-tetraoxaisophlorin (1), 21,22,23,24-tetraethaisophlorin (2) and 21,23-dioxa-22,24-dithiaisophlorin (3). From 1H NMR spectrum, it was observed that all the macrocycles were found to be anti aromatic in nature as expected of 4n system. Crystal structure analysis confirmed the planar structure for 1 and 3, while 2 displays a non-planar structure due to steric crowding by four bulky sulfur atoms.

The π expansion of isophlorin like macrocycles by increasing the number of heterocyclic units yields stable 30π and 40π conjugated systems. These expanded systems show different structural features depending on the kind of heteroatoms at the core of the macrocycle. The group has been successful in the synthesis and characterization of 32π vinylogous expanded isophlorins using thiophene and selenophene as the building blocks for these cyclic systems. In this process they have developed a simple synthetic process by employing easy to make precursors under mild reaction conditions. Their electronic and structural properties confirm the antiaromatic nature both in solution and solid states. The most interesting fact about these systems pertain to very rare F…X (X = S/Se/π) interactions in the solid state, particularly for 4nπ systems. Their antiaromatic property has been confirmed by both experimental and computation studies. Our goal, now, is directed towards the possible role of electronic effects to affect such non-bonding interactions in antiaromatic systems.

Furthermore, for the first time, the group has shown redox dependent inter-changeable conformations for an expanded isophlorins. Spectroscopic analysis, single crystal X-ray diffraction studies and quantum chemical calculations reveal the formation of stable aromatic dications upon the addition of TFA, [Et₂O·SbCl₅] or NOBF₄. In contrast to the generation of radicals from aromatic systems, [Et₂O·SbCl₅] or NOBF₄, tend to oxidize antiaromatic systems to aromatic dicationic species. These dications can be reduced back to their neutral antiaromatic state by a variety of reducing agents such as zinc, FeCl₃, or triethyl amine. In spite of the apparent thermodynamic stability for aromaticity, reversible process between 4nπ and

(4n+2)π states may be attributed to the facile reduction of aromatic dicationic species towards neutral antiaromatic state. This represents a prime example of an antiaromatic isophlorinoid and its corresponding aromatic dication as a reversible couple to inter-convert amongst themselves with suitable redox reagents.

It has also been shown that N-Confused dipyrrin does not show reactivity similar to that of dipyrrins with metal salts. Instead, it undergoes intermolecular cyclomerization, leading to the synthesis of the first examples for expanded norroles. They have multiple C-N bonds along the conjugated pathway of the
macrocyclic framework. Their synthesis is simple and can be catalyzed by a variety of metal ions. The considerable upfield and downfield chemical shift values signify \(\pi \) delocalization and anti-aromaticity. This macrocycle represents the first example of a \(32\pi \) octaphyrin with a non-twisted conformation. These macrocycles also demonstrate the possibility of accommodating more than two neo-confused pyrrole moieties and represent a new class of stable anti-aromatic expanded porphyrinoids with unusual \(\pi \) conjugation.

Main group ligands: Multi-Nuclear Cages, Clusters, Functional Materials

The current research focus of R Boomishankar's group is on the development of molecular systems derived from the elements of group 13, 14 and 15 and their applications in materials science and catalysis. His group has shown that organoamino phosphonium cations \([\text{P(NHR)}_4]^+\) can be used as novel synthons for building designer supramolecular structures aided by hydrogen bonding interactions in presence of various counter anions such as chloride, carboxylate and polyoxometallate ions.

One of the active areas of his research is the facile generation of imido analogues of main-group oxo anions and employing them as ligands in transition metal chemistry. Thus, his group has demonstrated that the imido anions corresponding to \(\text{HPO}_4^{2-} \), \(\text{HPO}_4^{3-} \) and \(\text{PO}_4^{3-} \) ions can be obtained by using salts of certain soft transition metal ions such as \(\text{Ag(I)} \), \(\text{Pd(II)} \), \(\text{Cu(I)} \) etc. in reaction with amino \(\text{P(V)} \) ligands in polar solvents at ambient conditions. It is to be noted that these anions were initially known when amido-\(\text{P(V)} \) ligands were treated with highly basic organometallic reagents and with limited stability in aprotic non-polar solvents. Reactivity studies on the tris(amido)phosphate ligands of the type \((\text{RNH})_3\text{PO}_4 \) with various salts of Pd(II) in methanol have revealed the exclusive generation of the fully deprotonated imido \(\text{P(V)} \) species analogous to the \(\text{PO}_4^{3-} \) ion as their tri- or hexanuclear Pd(II) complexes. In addition, the catalytic activity of these Pd(II) complexes in the Mizoroki–Heck (M–H) type coupling reaction of phenylboronic acid with alkenes has been established. Similarly, the imido anions analogous to \(\text{H}_3\text{PO}_4^{2-} \) and \(\text{HPO}_4^{2-} \) ions can be generated using certain reactive Ag(I) salts from the P(V) moieties having fairly acidic N-groups.

Many of these multi-nuclear Pd(II) complexes possess labile residual OAc groups attached to the Pd(II) atoms and thus are able to undergo further reactions leading to large metal-supramolecular cages where the tris(imido)phosphate trianion act as a novel cis-blocking agent for a planar Pd, building block. The role of this cis-blocking group is to provide stability for the Pd(II) ions and prevent polymerization of these cluster cages. The method utilized for these cages is very unique and aids in the exclusive generation of large charge neutral discrete cages. Furthermore, the tetrahedral cage assembly exhibits remarkable stability and selective gas adsorption and guest solvent encapsulation properties.

The utility of pyridylamino functionalized P(V) compounds such as phosphonium chlorides, phosphine imines and phosphine oxides which offer peripheral binding sites in addition to the imino and oxo sites has been demonstrated...
for obtaining larger arrays of metal ions. In a related project, interesting examples of Zn(II)- and Cu(II)-coordination polymers were synthesized for an in situ generated bis(amido)phosphate ligand. Vapour adsorption measurements on these polymers reveal a preferential water uptake in their pores over aliphatic alcohols, promising their application in the purification of Bioethanol.

Employing a tripodal aminopyridyl/aminquinolyl functionalized thiophosphoramide ligands, preparation of C₅-symmetric cationic Rugby-ball shaped \{[\text{Cu}_3\text{I}_6]^{3-}]/[\text{Cu}_3\text{I}_6]^{3-}\} cluster metal-organic frameworks (MOFs) has been achieved. Studies on the photophysical behavior of these two MOFs indicate their thermochromic luminescent behaviour.

Recently Boomishankar's group has discovered that by employing a flexible less symmetric phosphoric diamide ligand featuring neutral pyridyl N-donor sites (L), anion dependant structural assemblies of composition \{[\text{Cu}_2\text{L}_n][\text{A}_m]\} (I: n = 4, A = (\text{ClO}_4)\) and 2: n=4, A = (\text{NO}_3)\) can be obtained. While the compound 1 displays a non-centrosymmetric 1D-helical chain structure, the compounds 2 was obtained as centrosymmetric discrete assembly. Permittivity and ferroelectric studies have shown that counter anions such as perchlorate or nitrate ions can not only control the structural architectures but also can alter the physical properties associated with them. In addition, the hydrophilic central cavity in 2 selectively encapsulates a hydrated potassium cation and excludes other cations such as Na⁺ or Cs⁺ ion.

His group is also working on ligand scaffolds derived from peripherally functionalized silane and siloxane backbones. Recently, two iso-structural MOF materials 1, \{[\text{MeSi}(\text{Py})][\text{Cu}_3\text{I}_6]\)} and 2, \{[\text{MeSi}(\text{Qy})][\text{Cu}_3\text{I}_6]\) featuring Cu₃I₆ clusters have been synthesized from tridentate arylsilane ligands. These isostructural MOFs were shown to exhibit thermochromic and mechanochromic luminescent umpolung upon changing the sample temperature and mechanical grinding, respectively. This is primarily due to the variations in their cuprophilic interactions as 1 displays shorter Cu…Cu distances (2.745(1) Å) in comparison with those present in 2 (3.148(0) Å).

Apart from these, they have also been working on other silane and cyclic siloxane based ligands containing peripheral functionalities. Such ligands have led to the isolation of interesting designer architectures in cage and polymeric structures. Application of some of these cage molecules in host-guest chemistry and reactions within its confined space are in the process.
Metal Organic Frameworks

The principal research focus of Sujit Ghosh's research lies in the development of functional porous materials based on coordination polymers, suitable for applications in chemical industries, energy & environmental issues. Self assembly of predesigned organic building units (linkers) and metal ions/clusters involving appropriate coordination affinity allows the formation of the desired multidimensional networked structures known as Metal-Organic Frameworks (MOFs) or Porous Coordination Polymers (PCPs). Over the last decade, these organic-inorganic hybrid materials have particularly proved their excellent credibility for proficient application in the fields of gas storage and separation, catalysis, ion recognition, chemical separation, ionic conductivity, sensing etc.

The group seeks to correlate the designed structural features with intriguing physical properties and to design new synthetic methods to prepare functional materials and consequently tuning their properties from the standpoint of structural design.

Carbon capture and storage (CCS) technology is seeking great attention in the recent years owing to the pressing issue of greenhouse gas emissions, especially CO$_2$, which is directly linked to global warming & climatic changes. In particular, MOFs are seeking overwhelming attention due to high surface areas. Some of our new materials presented excellent CO$_2$ selectivity. The group has reported moisture stable 2,6-napthalene dicarboxylate and isonicotinic acid based Cd(II) porous MOF with pore size ~8 Å for selective CO$_2$ capture over N$_2$, H$_2$, Ar, O$_2$,CH$_4$ gases.

Chemical separation has immense importance in industrial applications. Separation of industrially vital monomers like benzene, p-xylene and styrene from the congener product streams is being investigated through construction of novel MOF materials and by appropriate exploitation of framework flexibility, open metal sites, lewis acidity etc. Recently, our group came up with the demonstration of an unprecedented selective adsorption phenomenon of para-xylene over its congener isomers by a new Zn(II) and carboxylate based flexible MOF.

Fuel cell as a clean energy source is emerging as an attractive option to produce energy in higher efficiencies without environmental pollution. MOFs offer a feasible alternative to overcome the intrinsic constraints of the currently used
Nafion membranes. The group has designed oxalate based Zn(II) MOF with hydrogen bonded dimethyl ammonium cations and sulphate anions for both anhydrous and humidified conditions. The humid condition conductivity is reported to be 4.2×10^{-5} S cm$^{-1}$ which is amongst highest value known for MOF and is the first report of MOF which shows proton conductivity in both humid and anhydrous condition.

MOFs as chemical sensor to induce luminescence as the signal transduction mechanism has been employed for addressing major security concerns like explosive detection. This has been achieved by appending Lewis basic pyridyl or amine functionality as recognition site into the porous channels of fluorescent Zr (IV) MOFs. First time the aqueous phase selective detection of 2,4,6-trinitrophenol (TNP) in presence of competing nitro analytes is demonstrated using MOF as probe. The detection limit for TNP was found to be 0.6 ppm.

The exploration of diverse functional aspects for different types of porous materials, mostly, MOFs and covalent-organic frameworks (COF) towards new-generation advanced porous materials for potential applications in energy and environmental needs are in progress.

Advance Porous Materials: MOFs & COFs

Ramanathan Vaidhyanathan's research is focused on the synthesis of porous framework materials including Metal Organic Frameworks, Covalent Organic Framework and ceramic based systems. The project aims to develop methods that avoid 'interpenetration' associated with MOFs. The crystallographic analyses of these MOFs show that even with closely related iso-compositional MOF structures, the openness or porosity could be varied by introducing asymmetry into the overall topology, that could be effected by synthetic control.

Another important focus of the group is towards tuning the CO$_2$ capture/separation capabilities of microporous MOFs. Synthetic strategies are used to control the capacity and selectivity for CO$_2$ in a Zinc amino triazolate family of MOFs. Several iso-compositional MOFs have been made and all with similar layered-pillared topology. In all cases, the Zn-aminotriazolate layers are pillared by oxalate units. However, the subtle differences in the corrugations associated with the layers create differences in the topology which can be monitored by the dihedral angles it makes with the pillars. It is possible to control this tilt or dihedral angle

Figure shows the diamondoid structure of a Zn(isonicotinate)$_2$ MOF. Note how the disposition of the diamondoid about the 2-fold axis is different in the two different diamondoid nets that have been shown.
by synthetic methods. Now, this has a direct consequence on the pore size and shapes in the 3-D structure. It also affects the exposure of specific functional groups on to the free spaces within the nanopores. Based on these insights a suitable preparation method and condition that has most porous ZnAtzOx framework which reaches nearly the theoretical capacity estimated from its single crystal structure been identified.

Figure shows two different 3D MOFs formed using Zn-aminotriazolate-oxalate units with different topologies and a crystallographic analysis gives insight into how the layer displacements correlate to openness.

Main Group Cations and Catalysis

The controversy over “how free the trivalent silicon cation is” has led to emphasis on their spectroscopic and crystallographic characterization and to understand the role of \(s \) or \(p \) Lewis basic molecules culminating in the discovery of innocent (non-coordinating) anions.

Silylum ions are extremely strong Lewis acids due to the electron sextet at the silicon atom and these electron deficient compounds are promising reagents in catalysis.

The major drawback of model (designed) catalysts is inadequacy of turnover numbers due to the instability of the counter-anion. To overcome the limitations, and design powerful catalysts, Shabana Khan’s group is working on synthesis of silylum ion using \([\text{B}_2\text{Cl}_6]\)^- (as non-coordinating anion).

Her group is also involved in the development of Si-based frustrated Lewis pair which can be utilized further to activate small molecules.

The FLPs have a Lewis acid and a Lewis base functional group, which cannot make a dative bond with each other because of the bulky substituents attached. The resulting reactive center in the molecule pair can easily activate small molecules, for example the dihydrogen.

In some cases this activation is reversible which is very important because the catalysts should be able to release the hydrogen. Thus, the excessive stability of the products is undesirable. Reversible activation of gases offers new pathway for gas storage and catalytic reduction.
Main Group Chemistry: Catalysis and Materials Applications

The last two decades witnessed the exuberant growth of the chemistry of heavier main-group elements. Arguably, the heavier main-group elements have fundamentally different electronic properties from their lighter congeners. With the discoveries of heavier main-group compounds in their low-valencies, the common perceptions such as their colourless nature, large HOMO-LUMO gaps, inertness towards bond activations, etc. have been invalidated. Worth mentioning features of such low-valent compounds are the following: (1) multiple bonds between them; (2) low-valent species with open coordination sites; (3) radical species etc. All these species have in common, frontier orbitals with small energy separations, which in turn resembles the well-explored transition metal complexes.

Moumita Majumdar’s research focus is to expand the chemical functionalities of low-valent compounds spanning the Groups 13-15 of the periodic table. Such functionalities will be translated to provide solutions to technological problems, catalytic applications and also replace expensive precious-metals in small molecule activations, catalysis etc. The programme involves two broad research targets:

1. Development of Main-Group Polymers featuring Homo/Hetero-nuclear Double Bonds: In carbon chemistry, the HOMO-LUMO gap is lowered by conjugation of the double bonds in the polymer chain, which is the underlying principle for their applications in electronic and photonic devices. The aim is to synthesize poly(phenylenevinylene) (PPV) analogues involving homo- or hetero-nuclear bonds in the polymer backbone that will conceptually mimic inorganic semiconductors such as gallium phosphide or indium arsenide.

2. Applications of Multiply Bonded Transition Metal-Silicon Based Compounds: The group will explore the stability of newly synthesized multiply bonded transition metal-silicon compounds and their potential applications. The transition metal and low-valent silicon working in tandem, will be utilized in the fields of catalysis, coordination polymers, conducting materials etc.

Recent literature have pointed to viable transition-metal surrogates by steering their frontier orbitals and energy separations. The long-term target of the group is to stabilize metal-free main-group compounds in order to primarily utilize them for small molecule activations and eventually turn them into prospective catalysts.

C. Materials, Nanoscience, Polymers and Surface Science

Polymer Science

Jayakannan’s research group has been working in the area of polymer science. Biodegradable and biocompatible polymer scaffolds for delivering anticancer drug molecules, new solvent free and eco-friendly melt condensation processes for amino acid based polymers, and supramolecular assemblies of 𝜋-conjugated polymers for optoelectronics are developed in his group.

Polymers for Drug Delivery: Polymer based nano-assemblies are emerging as an important tools for the administration of medicines or genes in cancer treatment. His research group has developed the following polymer system for the drug delivery applications: (a) Responsive Polysaccharide Vesicular nano-scaffolds, (b) Poly(caprolactone) functional Block copolymers and (c) Thermo-responsive A-B Diblocks.

His research group has developed unique dextran vesicles that were capable of protecting the plasma sensitive CPT lactone pharmacophore against the hydrolysis ten times
better than the CPT alone in PBS. Recently, the approach has extended to multiple drug loading and sequential drug delivering polysaccharide nano-vesicle for administering anticancer drugs DOX (topoisomerases II inhibitor) and CPT (topoisomerases I inhibitor) to achieve synergistic killing of cancer cells.

His research group has designed new pH responsive carboxylic functionalized polycaprolactone (PCL) block copolymers. These carboxylic substituted PCL block copolymers were self-assembled as pH responsive polymer vesicles in water for loading and delivering of drugs. These new vesicles were successfully demonstrated as delivery vehicles for both hydrophilic molecules (like rhodamine B, Rh-B) and hydrophobic drugs (Ibuprofen, IBU and camptothecin, CPT) under simulated GI tract.

These pH responsive PCL vesicles were stable in strong acidic conditions (pH < 2.0, stomach) and ruptures to release the loaded cargoes under neutral or basic pH (7.0 = pH) similar to that of small intestine.

Eco-friendly Synthetic Approaches for Polymers: Discovery of new green chemistry routes to replace existing hazardous ones is an important area of research for cleaner and environmental friendly industrial developments. His group has demonstrated a novel melt transurethane process for a commercially important class of polymers – polyurethanes. The present synthetic strategy is very good in producing urethanes and polyurethanes under solvent free conditions and very efficient for producing high molecular weight polymers compared to that of isocyanate routes.

Recently, a new dual ester-urethane melt condensation methodology for biological monomers-amino acids was developed to synthesize new classes of thermoplastic polymers under eco-friendly and solvent free polymerization approach. Naturally abundant L-amino acids were converted into dual functional ester-urethane monomers by tailor made synthetic approach. The current investigation opens up new platform of research activates for making thermally stable and renewable engineering thermoplastics from natural resource-amino acids.

Polymers for Electronics: Jayakannan’s research group has developed new molecular designs in the π-conjugated molecules which could only self-organize through weak non-covalent forces. New series of bulky oligophenylenevinylenes (OPVs) have fixed aromatic π-core with variable chain in the longitudinal position were
designed. These molecules were self-organized into three dimensional supra-structures via cholesteric liquid crystalline (LC) mesophases.

Recently, his group has demonstrated one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor made π-conjugated polymer anisotropic organogel. New semi-crystalline segmented π-conjugated polymers are designed with rigid aromatic OPV π-core and flexible alkyl chain along the polymer backbone.

These semi-crystalline polymers produce organogel having nano-fibrous morphology. The polymer organogel is aligned in a narrow glass capillary and this anisotropic gel device is demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. Thermo-reversibility of the polymer organogel (also its xerogel) was exploited to construct thermo-responsive photonic switches for the temperature window starting from 25 to 160°C.

Surface Science and Materials Chemistry

Metal-Organic Gels and Hybrids

Polymeric coordination of organic ligand to metal ion leads to the formation metal-organic frameworks and metal-organic gels. The properties like visco-elasticity and stimuli-responsive behavior are added advantages in metal-organic gels.

Fe-BTC/TPA (benzene tricarboxylic acid/terephthalic acid) gels has been utilized to incorporate in situ (without the use of extraneous oxidant) conducting polymers polypyrrole and polythiophene which resulted in the generation of conductive composite materials similar to earlier studied polymer bronzes. Also, we have used pyrrole, bithiophene and aniline as the co-ingredients of the redox-active Fe-TPA gel to turn-on the photo-luminescence which is otherwise non-luminescent. Ongoing activities in this direction include diode characteristics and photovoltaics.

Plasmonic Nanoparticles

Alloy NPs is a very active field of multidisciplinary research with promising applications in photonics, plasmonics, sensing, medical diagnostics and catalysis. Wet-chemistry has been playing a pivotal role in producing stable Au-Ag alloy NPs with controllable structure-property relationship via standard co-reduction of HAuCl₄ and AgNO₃. A detrimental factor in co-reduction persisting over a decade period is the co-precipitation of AgCl which adversely affects the composition and various properties; thereby always pushed the limit of standard co-reduction below the solubility product of AgCl! Another alarming concern is the surface-enrichment of Ag in the Au-Ag alloy NPs which has been majorly overlooked on the basis of the similar lattice constants of Au and Ag.
Nirmalya Ballav's group is working to address the concept of 'true-alloying' of Au and Ag in NPs by exploring the power of wet-chemistry as well as combining various complementary measurements. This work is expected to stimulate future investigations in the development of multifunctional alloy NPs with high-performance capability.

Chemically Converted Graphene

Graphite oxide (GO) is one of the main precursors to generate graphene-based materials, which are highly-promising for various technological applications. Currently the wet-chemical route to produce so called chemically converted graphene (CCG) sheets with thickness in the range of few nm and length in the range of few cms is being explored. Specifically, the group is interested in the thermal and electronic properties of flexible CCG thin-films.

Establishment of Surface Science lab: At the forefront of scientific and technological evolution lies controlled experimentation and engineering with individual molecules, atoms, and quantum states. This is where current *Surface Science* – the art of keeping surfaces atomically clean and chemically well-defined; and *Nanoscale Science* – the art of controllably fabricating, manipulating and experimenting with small objects meet. Progress at the frontier of Surface Science research critically depends on highly-specialized equipments which combines spectroscopy (XPS/UPS) and microscopy (STM) techniques. At IISER Pune a dedicated facility is planned which enables the Institute in performing cutting-edge research in this highly-visible and dynamic field towards fundamental understanding and future technological applications. This facility will be a very important and useful addition to the existing facilities at IISER Pune.
Colloidal Semiconductor Nanocrystals

The main research focus of Angshuman Nag’s group is on developing functional inorganic materials using solution processed semiconductor nanocrystal modules. The work can be divided into three major sections (i) material design mainly using colloidal organic-free nanocrystals, (ii) spectroscopic studies using luminescence and XAFS, and (iii) magneto- and opto- electronic applications forming flexible transparent conductor, solar cell and carrier mediated magnetic coupling.

Electronically Coupled All-Inorganic Nanocrystals

Integration of nanocrystals in electronic and optoelectronic devices like photovoltaics, light-emitting-diodes (LEDs), photodetectors and printable electronics depends on the electronic property of the nanocrystal film, and thus on the interconnect between adjacent nanocrystals. However, colloidal nanocrystals are generally capped with an insulating organic layer. Consequently, the benefits of quantum confinement effect and solution processibility cannot be utilized because of inefficient injection or extraction of charge carriers. Nag’s group is interested in designing organic-free semiconductor nanocrystals for various optoelectronic applications. They have developed a novel synthesis protocol for preparing colloidal ligand-free metal chalcogenide nanocrystals (CdS, ZnS, Mn-doped Zn, CdS, CdSe, ZnSe, PbS, PbSe, and AgInS₂). These ligand-free nanocrystals exhibit signature of electronic coupling in a nanocrystal film, and have been employed to prepare non-toxic and less explored AgInS₂ quantum dot sensitized solar cell. Ligand-free Sn doped In₂O₃ and AgInS₂-Ag₂S heterodimers are being investigated to achieve solution processed flexible transparent conducting oxides and in-built p-n junction for photovoltaic applications, respectively.

Sintering of solution processed semiconductor nanocrystal has been recently recognized as an easy and cost-effective method to grow semiconductor thin films. Typically, the nanocrystals need to be sintered at >350 °C. However, such high temperatures are not suitable for flexible polymer substrate. Nag’s group developed a novel method to sinter ligand-free PbS and PbSe nanocrystals at room temperature employing oriented attachment of nanocrystals.

Luminescent Nanocrystals

I-III-VI₂ semiconductor (for example, AgInS₂ and CuInS₂) nanocrystals exhibit a new kind of luminescence different from both excitonic emission and dopant-related emission. Nag’s group elucidated the luminescence mechanism for colloidal AgInS₂ nanocrystals. There are two radiative pathways, one involves delocalized states like valence and conduction band, and the other path way involves two localized donor and acceptor defect states.

Ag₂S nanocrystals have been studied in recent times because of its near infrared luminescence. Typically, broad absorption and luminescence are observed from Ag₂S nanocrystals. Nag’s group developed Ag₂S nanocrystals exhibiting narrow excitonic absorption and emission.
In another interesting approach, organic-free luminescent nanocrystals have been developed for chemical sensing simply utilizing the fact that the analyte can interact easily with the bare nanocrystal surface.

Doped Semiconductor Oxides

Nag’s group is developing a unique category of material exhibiting the above mentioned three properties simultaneously, via doping a magnetic ion in a transparent conducting oxide nanocrystal. For example, in Fe-Sn codoped In\(_2\)O\(_3\) nanocrystals, localized surface plasmon resonance band is observed in near to mid infrared region along with room temperature ferromagnetism and electrical conductivity >1 S/cm. More importantly, the electron mediated magnetic coupling can lead to spin based applications.

Multifunctional Magnetic Nanoparticles

The main research focus of Seema Verma's laboratory is to develop novel synthetic routes to synthesize highly monodispersed multifunctional magnetic nanocrystals using suitable surfactants that are dispersible both in water. The group is also focusing on designing multifunctional magnetic-plasmonic hybrid nanostructures by utilizing novel synthetic routes. Emphasis is given to obtain mesoporous magnetic-plasmonic hybrid materials, suitable for biomedical applications and in active plasmonic devices. Further work is going on to obtain the nanohybrid structures suitable for SERS applications. The group has reported a strategy to obtain a stable thin film of magnetic nanocrystals at the air/water interface utilizing Langmuir-Blodgett (LB) method. This strategy can be extended to any similar systems.

Recently, the group has reported a detailed examination of the effect of induced off-stoichiometry on structural, thermal and magnetic properties of nickel cobaltite, NiCo\(_2\)O\(_4\) nanoparticles which is a promising transparent conducting oxide material. It is seen that the excess cobalt ions stabilize the nickel cobaltite structure even up to the temperature of 773 K and has interesting consequences on the magnetic structure and properties. Enhanced thermal
stability, improved structural and magnetic properties of the off-stoichiometric sample is evident from the magnetic and neutron diffraction studies.

A comparison of zero-field cooled (ZFC) magnetization of off-stoichiometric (Ni$_{0.75}$Co$_{0.25}$O$_4$) and stoichiometric (NiCo$_2$O$_4$) nanoparticles show stronger exchange interaction value for annealed off-stoichiometric samples. This observation was well supported by the field dependent magnetization measured at 7K. Off-stoichiometry in nanosystems may thus offer a novel route to new materials with interesting properties.

Energy and Electrochemistry

The development of novel energy generation and storage techniques presents chemistry with its possibly most important challenge of the 21st century. The rechargeable lithium-ion battery has revolutionised portable electronics, however Li-ion batteries, with LiCoO$_2$ and Li transition metal oxides as the Li active materials, used widely today face serious problems relating to safety and resource costs.

The main research focus of Musthafa’s energy laboratory is understanding the complex phenomena at the electrode/electrolyte interface by a range of electrochemical, microscopic and spectroscopic techniques and extending the fundamental understanding gain at the molecular level to design cost effective, economical and environmentally friendly energy storage and conversion devices. Further, his group has interest in building novel interfaces for selective sensors, water splitting, photoelectrochemical production of fuels, water remediation etc.

Towards this direction the group has interests to explore: (i) the photo charging batteries to decrease the higher charging voltages and longer charging time and (ii) the self-discharge encountered in typical energy storage devices, developing novel proton exchange membranes for PEM fuel cells towards new energy storage and conversion strategies.

Nanomaterials for Light Harvesting and Biotargeting Studies

Research in Pramod Pillai’s laboratory is focused on the design and synthesis of hybrid nanomaterials formed by the integration of two or more materials at the molecular or nanometer length scale which may exhibit fundamentally new properties and phenomena. Nanomaterials based on organic-inorganic, metal-metal and metal-semiconductor nanomaterials will be developed to address two global concerns: (1) energy and (2) therapeutics.

The goal of Pillai’s group is to improve the stability of the charge separated species in light harvesting materials to improve their overall efficiency. Efforts are to develop heterostructures based on metal (M) and semiconductor (SC) nanomaterials for studying the effect of geometries, compositions and configurations on the stability of photogenerated electron-hole pairs. The inclusion of
metal nanostructures, as one of the components, is expected to enhance the overall efficiency of the photovoltaic device due to its (i) electron storage/transport capability and (ii) light concentration property through a strong near-field enhancement by the surface plasmon effect.

Another area of focus is on providing insights into the basic question in nanomedicine: how to improve the biostability and specific targeting of nanomaterials in therapeutics. The surface chemistry (charge, functionality, ligand arrangement, hydrophobicity and hydrophilicity) plays a crucial role and improvement for tuning simultaneously incorporation of ionizable and biotargeting. These multifunctional NPs are anticipated to exhibit advanced biophysical properties such as improved biostability and circulation time, controlled cellular uptake, reduced non-specific binding etc.

D. Spectroscopy and Dynamics

Gas Phase Laser spectroscopy

The major research focus of Aloke Das and his group is on molecular level understanding of weak non-covalent interactions responsible for the stabilization of specific structures of biomolecules (proteins, DNA etc.) and biological recognition processes. The primary thrust of the research is to unravel the detailed nature and strength of these interactions as well as competition among these non-bonding interactions. In-depth knowledge about these interactions is extremely helpful in designing efficient drugs and functional materials. Mass-selected electronic and vibrational spectroscopy of weakly-bound complexes of the building blocks of biomolecules and materials are studied in the isolated gas phase (supersonic jet) employing UV and IR laser based various spectroscopic techniques combined with quantum chemistry calculations. The spectroscopy experiments are performed in a home-built REMPI (Resonantly Enhanced Multiphoton Ionization) jet-cooled Laser Desorption Time of Flight Mass spectrometer. A glimpse of a few ongoing projects is highlighted here.

Non-covalent interactions: Molecular level understanding

Das's group work on spectroscopic studies of “special class of mixed complexes” comprising of strong hydrogen bonding and dispersion bound interactions (multiple types of non-covalent interactions) has revealed unique information on the basic structures of biomolecules and materials.

Das and co-workers have studied mixed dimer and trimer of indole and pyridine synthesized in a supersonic jet using Resonant 2-Photon Ionization (R2PI) and IR-UV double resonance spectroscopic techniques. It has been observed that indole...pyridine dimer has a unique V-shaped geometry while (indole)...pyridine trimer has a cyclic structure. It is intriguing to note that such geometry of the complexes is formed to gain maximum stability through effective use of hydrogen bonding and dispersion interactions. They have shown here how the geometry of molecules and complexes are governed by delicate balance between strong hydrogen bonding and dispersion interaction.

Exclusively π-stacked heterodimer of indole and hexafluorobenzene has been observed in the gas phase by using R2PI and IR-UV double
resonance spectroscopy combined with quantum chemistry calculations. It has been found that the observed π-
stacked indole...hexafluorobenzene dimer has a unique structure where the center of the hexafluorobenzene ring is
aligned with the center of the shared bond of the indole ring. This work demonstrates that hexafluorobenzene in
comparison to benzene is a superior building block for designing very stable material with infinite columnar structure
through stacking interaction and less slip angle between two molecular units.

Aromatic-aromatic interactions are of profound significance in
the stabilization of the specific functional structures of proteins as well as protein-protein and protein-ligand interactions. The Das
group has studied aromatic trimeric interactions which are very
often present in the aromatic side chains of proteins. They have
reported here a direct experimental evidence of the observation of a cyclic asymmetric triangular structure of indole’ (pyrrole), trimer
held by three N-H π hydrogen bonding interactions. The structure observed in the experiment resembles with a
trimeric structure of tryptophan and two phenylalanine residues in the crystal structure of a protein called L-ribulose-
5-phosphate 4-epimerase (PDB ID: 1JD1).

n → π* interaction: Spectroscopic evidence

In this work, Das group has studied a subtle competition between a
very weak n→π* and a very strong hydrogen bond (N-H...N) interactions present in the complexes of 7-azaazaindole with a series of 2,6-substituted fluoropyridines and observed how the weak interaction modulates the overall structural motif of these complexes in the presence of the strong interaction. They have
proved the presence of the n→π* interaction by probing the strength of the hydrogen bond (N-H...N) through measurement
of the N-H stretching frequency using IR-UV double resonance spectroscopy.

Future work of Das group includes direct spectroscopic evidence of the n→π* interaction by probing carbonyl
stretching frequency, gas phase study of sequence dependent folding motifs in peptides by using laser desorption jet-
cooled study, vibrationally resolved CD (Circular Dichroism) spectroscopy of different conformations of peptides and other chiral molecules in isolated gas phase.

Fluorescence Spectroscopy, Excited State Dynamics and Biophysics

The main research focus of Partha Hazra’s laboratory is to study the excited state photophysics and dynamics of
fluorophores/drugs in molecular containers, various kinds of self-assembled organized structures as well as in
biologically tailored systems.

Ultrafast Fluorescence Dynamics

The group has studied the solvation dynamics and rotational
relaxation of Coumarin 153 (C-153) in SDS dispersed two different
types of single walled carbon nanotubes (SWNTs), namely metallic
and semiconducting, using picosecond fluorescence spectroscopy. It has been observed that solvation dynamics of C-153 in SWNTs is
severely retarded compared to pure water and SDS micelle.

In another work, urea dynamics inside AOT reverse micelle (RM) has
been monitored without intervention of water using time resolved fluorescence techniques from picosecond to nanosecond time regime. It has been observed that urea dynamics inside the reverse micelle is severely retarded compared to water RM due to the formation of highly networked urea cluster inside the RM.

Femtosecond fluorescence upconversion measurements are employed to elucidate the mechanism of ultrafast double proton transfer dynamics of BP(OH)$_2$ inside molecular containers (cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD)). Femtosecond up-converted signal of BP(OH)$_2$ in water consists of growth followed by long decay component (~650 ps). The apperance of growth component (~35 ps) in the up-converted signal indicates the presence of two-step sequential proton transfer process of BP(OH)$_2$ in water. Surprisingly, the up-converted signal of BP(OH)$_2$ inside the CB7 nano-cavity does not exhibit any growth component characteristic of two-step sequential process. Interestingly, the growth component exists inside the nano-cavity of β-CD (having similar cavity size as that of CB7), infering the presence of two-step sequential process of PT inside the β-CD nano-cavity. The different features of PT dynamics of BP(OH)$_2$ in the above mentioned two macrocyclic hosts may be attributed to the presence and absence of water solvation network surrounding the BP(OH)$_2$ inside the nano-cavities of β-CD and CB7, respectively.

Bio-molecular and Material Interactions

In vitro probing of protein-DNA interaction is monitored by fluorescence switching of an eminent anti-cancer drug, ellipticine. It is observed that fluorescence switching takes place from blue to green when serum albumin (SA)-bound ellipticine interacts with DNA.

Electron microscope (SEM) images disclose the existence of radially branched dendritic architecture in protein-DNA system where DNA starts nucleation at the tip of 'fern leaf' aggregates of protein. We believe this simple but effective strategy of using visible colour switch as a tool to monitor protein-DNA interaction will be helpful in understanding many important cellular processes in vitro and in vivo.

Graphene oxide based molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA. The green fluorescence of E switches to blue in GO and switches back to green by polynucleotides. The intensified blue emission of the ellipticine-GO (E-GO) complex with human serum albumin (HSA), switches to bluish green upon addition of dsDNA. Electron microscopy reveals the formation of distinctive 3D assemblies involving GO and biomolecule(s) probably through non-covalent interactions and is primarily responsible for the biomolecule(s) assisted fluorescence-switching of E. To our knowledge, such morphological pattern of GO-DNA complex is very unusual, reported here the first time and could find applications in the fabrication of biomedical devices.

In future, his group will try to understand the water dynamics in A-DNA, Z-DNA and RNA. They will also focus the interaction features of different biomolecules and graphene, considering biomedical applications of graphene and its derivatives. The group is also interested to build-up fluorescence lifetime correlation spectroscopic technique in order to understand many important biological events, e.g. DNA compaction process in single molecular level. The dynamics of flavoprotein will be explored using transient absorption and transient grating techniques.
Structure and dynamics in the function of biomolecules

Fast, local motion in enzymes

A major goal of Puranik’s laboratory is the elucidation of the role that fast, local motions play in enzyme catalysis. Proteins are flexible structures with dynamics on many different time-scales from femto- to milli-seconds. Understanding the role of these dynamics in protein function is a major goal in the field of enzymatic catalysis. Slower motion (us-ms) is now understood to be important for creating catalytically active conformations and controlling the access of small molecule substrates to the active-site. Motion relevant to chemistry at the active-site is at faster, femtosecond (fs) timescales. There are only a handful of studies that have examined protein motion on this fast timescale. Puranik’s group aims to understand structural and electronic changes in the substrates due to protein environment and the role of fast dynamics at the active-site relevant to catalysis. Some of the questions being addressed are: what is the timescale and magnitude of response of the enzyme active-site to excitation of bound ligands? Do allosteric effectors influence fast dynamics at the active-site? Do site mutations remote from the active-site influence these dynamics? In analogous proteins from different organisms, does protein dynamics contribute to differential catalytic abilities?

Dynamics of molecules

Puranik’s laboratory has measured the excited state dynamics, intramolecular relaxation and reactivity of nucleic acids and aminoacids. Experimental measurements of direct time-resolved femtosecond vibrational spectra at <100 fs is not possible because the uncertainty principle leads to a large spectral width for short pulse duration. This is overcome by making experimental measurements of spectral broadening followed by wave-packet dynamical modeling of the experimental measurements. Her group has observed an ultrafast (<100fs) component of Trp relaxation dynamics for the first time and shown that both, inter and intra-molecular relaxation occurs on this time-scale.

Raman measurements and TDDFT calculations on several purines – adenine, 2-aminopurine and 2,6-diaminopurine have lead to an understanding of how location of the amino-group influences the relative ordering of excited states.

Dynamics inside the protein core

The timescale and magnitude of residue dynamics in the core of a native folded protein, Barstar was determined. This was accomplished by using a buried tryptophan residue as a probe. A first example of a CH-pi interaction at the core of a protein was identified. Unique signature of this CH-pi interaction was used to follow the kinetics of core assembly, water exclusion and consolidation during folding. This permitted the delineation of steps in the core assembly not observable with traditional methods.

Protein-ligand interactions

Puranik’s group is studying the function and dynamics of nucleic acid binding enzymes from DNA repair and purine salvage pathways in terms of the enzyme's ability to recognize multiple substrates while still retaining specificity of the chemical catalysis step. Some of the enzymes are: Fpg of the Base Excision Repair pathway; an in-situ DNA repair demethylase, AlkB; and purine recycling pathway enzymes (HGPRT and ADSS) that are being studied using molecular biology and spectroscopic studies.

In HGPRT, an enzyme that converts free nucleobases into corresponding nucleotides, it was shown that the enzyme distorts bound nucleobases upon binding with differential extent of distortion for different substrates. Using non-elevable substrate analogues it was shown that despite 80% identity in their active-sites, human and malarial parasite (Plasmodium falciparum) enzymes have differential ability to bind, distort and catalyse common substrates.

Figure shows the CH-pi interactions between a tryptophan, phenylalanine and isoleucine residues in the core of a native, folder structure of Barstar protein.
Adenylosuccinate synthetase (ADSS), which has multiple substrates, is a more complex system. IMP, GTP and L-asp bind to ADSS to produce adenylate succinate. The allosteric influence of GTP on IMP, is being examined. Complexes of the enzyme with various substrates are being studied with an aim to detect transient intermediates and understand the origin of directional kinetics of this enzyme.

Dynamics of a substrate bound within the active-site of an enzyme

The future plans are to measure the femtosecond dynamical coupling between a nucleotide substrate and human HGPRT enzyme to understand the role of fast, local motions in assisting the chemical step of conversion of substrates to products.

Terahertz spectroscopy

Pankaj Mandal is exploring the “Terahertz (THz) gap” in the electromagnetic spectrum, which became accessible only recently and opens new avenues of probing matter at ultrafast time scales and at the nanoscale. THz frequencies, typically 0.1 to 15 THz (3 to 500 cm⁻¹), span the range of low-energy excitations in electronic materials, low-frequency vibrational modes of condensed phase media, and vibrational and rotational transitions in molecules. Hence this is a key spectral range for probing fundamental physical interactions as well as practical applications with great technological promise for security and medical imaging. Specifically, time-resolved THz spectroscopy is being used to study the carrier and spin dynamics in nanoparticles and hydrogen-bond dynamics in solvated biomolecules.

THz spectroscopy is 'the ideal' technique to probe the above dynamical processes because the time scales related to them are in the picoseconds (10⁻¹²) range which corresponds to THz frequency (10¹³ Hz).

Pankaj Mandal’s group has built high power large bandwidth THz spectrometer at IISER-Pune. Broadband THz pulse of sub-picosecond duration is produced from a four-wave-mixing process in air-plasma created by amplified ultrafast laser pulse. This method of generation of THz radiation produces very large bandwidth, limited only by the pulse width of the laser light used. They have successfully implemented “Air Biased Coherent Detection” scheme for detecting large bandwidth THz light. A bandwidth of ~18 THz has been achieved. Such set-up for carrying out ultra
Adenylosuccinate synthetase (ADSS), which has multiple substrates, is a more complex system. IMP, GTP and L-asp bind to ADSS to produce adenylate succinate. The allosteric influence of GTP on IMP is being examined. Complexes of the enzyme with various substrates are being studied with an aim to detect transient intermediates and understand the origin of directional kinetics of this enzyme.

The future plans are to measure the femtosecond dynamical coupling between a nucleotide substrate and human HGPRT enzyme to understand the role of fast, local motions in assisting the chemical step of conversion of substrates to products.

Pankaj Mandal is exploring the “Terahertz (THz) gap” in the electromagnetic spectrum, which became accessible only recently and opens new avenues of probing matter at ultrafast time scales and at the nanoscale. THz frequencies, ν typically 0.1 to 15 THz (3 to 500 cm$^{-1}$), span the range of low-energy excitations in electronic materials, low-frequency vibrational modes of condensed phase media, and vibrational and rotational transitions in molecules. Hence this is a key spectral range for probing fundamental physical interactions as well as practical applications with great technological promise for security and medical imaging. Specifically, time-resolved THz spectroscopy is being used to study the carrier and spin dynamics in nanoparticles and hydrogen-bond dynamics in solvated biomolecules.

THz spectroscopy is ‘the ideal’ technique to probe the above dynamical processes because the time scales related to them are in the picoseconds (10^{-12}) range which corresponds to THz frequency (10^{12} Hz).

Pankaj Mandal’s group has built high power large bandwidth THz spectrometer at IISER-Pune. Broadband THz pulse of sub-picosecond duration is produced from a four-wave-mixing process in air-plasma created by amplified ultrafast laser pulse. This method of generation of THz radiation produces very large bandwidth, limited only by the pulse width of the laser light used. They have successfully implemented “Air Biased Coherent Detection” scheme for detecting large bandwidth THz light. A bandwidth of ~18 THz has been achieved. Such set-up for carrying out ultra Dynamics of a substrate bound within the active-site of an enzyme Terahertz spectroscopy is available only in few laboratories in the whole world, and is built for the first time in India. An experimental set-up for “optical pump-THz/white light probe Spectroscopy” has already been built. This set-up will enable probing a time-dependent (transient) event using either a broadband THz or a broadband white light (WL) as probe. A temporal resolution of 50 femto-second (fs) can be achieved.

Currently the following problems are of interest to the group: 1) Probing multiple exciton generation (MEG), carrier dynamics, phonon dynamics in semiconductor nanocrystals, 2) THz induced magnetization dynamics in magnetic naomaterials and molecular magnets, 3) Hydrogen-bond dynamics, solvation dynamics in liquid water and water-biomolecule network, and 4) intermolecular interactions and related dynamics in binary/ternary liquid mixtures.

Mandal’s group have studied THz spectroscopy and molecular dynamics simulation (in collaboration with Dr. Arnab Mukherjee) of methanol-benzene azeotrope and trying to evaluate the delicate balance of intermolecular interactions between molecules involved which lead to the formation of azeotropic mixture. Their finding indicates towards a first-order liquid/liquid phase transition from a non-azeotrope to an azeotropic mixture at elevated temperature.

Unusual blue-green emission has been observed in amyloid fibril, crystalline protein and in protein solutions. Often protein aggregation is attributed to this unusual visible emission. However, the origin of this emission is not known exactly. Dr. Mandal’s (in collaboration with Dr. P Hazra) spectroscopic studies of serum proteins revealed that blue-green emission is, most likely, a property of protein monomer. Evidences suggest that semiconductor-like band structure of proteins with the optical band-gap in the visible region is possibly the origin of this phenomenon. They have shown that the band structure of proteins is primarily the result of electron delocalization through the peptide chain, rather than through the hydrogen bond network in secondary structure.

Matrix isolation THz spectroscopy: The intermolecular interactions such as hydrogen bonding, pi-pi interaction, van der Waals interactions etc between molecules are very important in condensed phase. The intermolecular vibrations have frequencies in the THz range. In addition to study of these intermolecular forces in condensed media,
understanding their nature in isolated molecular complexes will provide more detailed and clear fundamental picture about them. Dr. Mandal's group is planning to combine their THz spectrometer with Matrix Isolation technique to study different weakly bound complexes between molecules trapped in matrix of inert gas. This will be the very first such experimental technique to study the intermolecular interactions directly.

Biomolecular NMR Spectroscopy

The main research focus of Jeetender Chugh's group is on various aspects of solution NMR including theoretical design and experimental implementation of new NMR experiments to probe the biophysical characteristics of RNA and proteins; understanding functional aspects of non-coding RNAs; and structural biology of microRNAs and their regulation in various disease settings.

ms-µs dynamics in RNA With the current plethora of structure prediction algorithms, it is possible to predict sub-optimal secondary structures for a given RNA sequence. However, the number of these sub-optimal secondary structures, as predicted by various structure prediction algorithms available, increases exponentially both with increase in the number of nucleotides in the RNA sequence and with increase in the energy range. Although, for small RNAs and for small energy range these algorithms do pretty well, but still there is a need to validate these 'feasible' structures experimentally. Experimental characterization of alternative structures for small RNAs using state-of-the-art R1 NMR relaxation dispersion experiments has been done successfully but is a time consuming and expensive affair. Thus there is a dire need to formulate sequence codes that would predispose the sequence towards such motions and allow predicting precise sub-optimal secondary structures without the need of experiments.

miRNA biogenesis pathway

All miRNAs do not follow a universal pathway for their biogenesis. Specific mechanisms in the biogenesis of individual class of miRNAs suggest multiple opportunities for tight regulation of miRNA levels. This spectrum of distinct mechanisms is widening everyday as more and more interacting partners are being identified. Although several reports emphasize on the regulatory activities of miRNAs, very little is known about the structural (primary, secondary or tertiary) understanding of the regulation of miRNA expression levels and their activity. Therefore, understanding the conformational roles fundamental for these regulatory mechanisms in the miRNA biogenesis pathway may act as a path-breaking step for development of new drugs based on RNAi mechanism.

D. Spectroscopy and Dynamics

Computational Chemistry

Arun Venkatnathan’s group focuses on the application of quantum chemistry methods and Molecular Dynamics (MD) simulation to characterize molecular and nano-scale properties of materials of relevance to alternate energy. Specific problems of interest are the nanostructure and molecular transport of polymer electrolyte membranes under various fuel cell operating conditions; spectral properties and energetics of various clathrate hydrates; proton transport and nano-scale behaviour of imidazolium ionic liquids.

Molecular Simulation of Polymer Electrolyte Membranes

Polymer Electrolyte Membrane (PEM) fuel cells offer strong potential for delivering power with high efficiency and minimal emissions making it an attractive choice for stationary and portable applications. The polymer membrane acts like an electrolyte and is responsible for proton conduction. Some of the important contributions and findings from Arun Venkatnathan’s group are: development of force-field parameters for triflic acid and triflate ion as proton conducting groups (Fig. a), simulation of side chain pendants of various Perfluorosulfonic acid polymer membranes to illustrate their influence on structure and dynamics of hydronium ion and water transport, examination of nanostructure (Fig. b) of Aciplex polymer membrane and molecular transport (at varying hydration and temperature) and comparison with Nafion. The group has performed detailed analysis on various interactions and dynamical properties of benzimidazole (monomer and polymer) membranes with phosphoric acid and triflic acid and examined the effect of polymer chain length, phosphoric acid concentration and temperature. The simulations predict that the decamer of the ABPBI membrane (Fig. c) is the optimum polymer chain length beyond which no significant change in properties is observed. The blend of phosphoric acid and triflic acid doped with ABPBI membrane could be the most effective in reducing acid leaching from the membrane matrix.

Proton transport and nano-scale behavior of Ionic Liquids

Arun Venkatnathan’s group has examined proton-transport pathways in a triethylammonium-triflate (TEATF) ionic liquid (IL)-doped side chain of a polymer electrolyte membrane using quantum chemistry calculations. The calculations (Fig. d) predict that proton transfer from a tertiary amine cation (TEAH⁻) to a tertiary amine (TEA) occurs only with an interaction with an anion (TFA⁻), which increases its basicity. Results have a bearing on the experimental choice of IL to provide enhanced proton conduction in polymer electrolyte membrane environments. The group has also characterized the structure and dynamics of Ammonium based benzyl-NX, (X=Methyl, Ethyl) trifluoromethane-sulfonate ILs using MD simulations and ionic conductivity using Electro-chemical Impedance Spectroscopy (EIS) at varying temperature and Relative Humidity (RH). The BzTMA cations show both C-H/Ph and cation-Ph interactions, whereas BzTEA cations show only strong cation-Ph interactions (Fig. e). Further, the group has explored the effect of water concentrations on structure of hydrophobic imidazolium IL and have observed phase-segregation (Fig. f), cationic tail aggregation and micelle formation. The results from this work provide a molecular understanding of influence of water on properties of such ILs used in various technological applications.

Clathrate Hydrate Chemistry

Arun Venkatnathan’s group has also examined the structure, stability and spectral properties of clathrate hydrates (lattice formed from various water cages) using Density Functional Theory. The calculations performed using dispersion included functionals accurately predict spectral properties of encapsulated methane and hydrogen molecules in various water cages and are consistent with experiments performed on the hydrate lattice. The maximum occupancy and calculated spectra (Fig. g) of hydrogen occupied cages (with and without Tetrahydrofuran dopant) validate the observations on characterization of hydrogen storage done by several experiments.
Future directions

Arun Venkatnathan’s group will examine anionic size effects, variation in alkyl chain length of the imidazolium cation and influence of temperature on the nanostructure and dynamics of several imidazolium ILs. Such a molecular level understanding can assist in choice of ILs for various applications like electrolytes, CO₂ capture etc. The group also aims to investigate proton transport in imidazole chains using gas-phase quantum chemistry calculations and characterize properties of binary IL mixtures and IL doped PEM (for anhydrous proton conduction) using MD simulations.

Computational Biophysics

Research activities of Arnab Mukherjee’s group (AMG) focuses on the molecular mechanism and thermodynamics of biological recognition processes, conformational transitions, etc. Each member of the group works in different areas involving drug-DNA and protein-DNA intercalations, enzymatic activity, DNA structural transition, role of water, etc. Simultaneously, fundamental research interest on various topics of physical chemistry, e.g., azeotropic mixture, chaotropic mixtures, even simple water are also of group’s interest. Their group collaborates with experimental groups often to provide a molecular understanding to observed phenomena with the help of detailed molecular dynamics simulation. Some of the details are mentioned briefly below. A snapshot of some of the projects running in the group is given in the following figure.

Mechanism of Intercalation of Anti-cancer Drugs to DNA Intercalation of drug into DNA is the first step towards the mechanism of anti-cancer activity by anthracycline antibiotics. AMG has shown for the first time the molecular mechanism of intercalation of drugs into DNA using an anti-cancer agent proflavine. Using a designed reaction coordinate (Fig. a), they showed that the process goes via a minimal base-stacking penalty pathway. Also, the detailed free energetic studies carried out by their group shows that the drugs bind to the minor groove first before intercalating through major groove (Fig. b). This pathway gives the timescale of the process similar to what is observed in experiment. Direct intercalation through minor or major will lead to much longer (seconds) and shorter (microsecond) timescale. They also showed that the binding of the proflavine (Fig. c) to DNA is much faster (nanosecond) compared to reported experimental estimate from fluorescence kinetic studies (sub-millisecond). AMG is currently exploring the dynamical effect (recrossing and internal friction) of the process near transition state (Fig. d). Another continuation of the intercalation project is to study the mechanism of kink formation in DNA by
intercalation of amino acids of the bound protein, typically observed in transcription factors (Fig. e). AMG has found that the partial intercalation of amino acid is responsible for kink formation.

DNA Structural Transition and application in Nanodevices DNA is polymorphic by nature. Depending on the external environment, DNA can take different conformations known as B-DNA, A-DNA, Z-DNA, etc. Structural transition in DNA has been exploited in devices as well. There have been numerous studies on the structural transition of the DNA from B- to A-form. However, AMG was the first to calculate the structural change at a local dinucleotide level. They introduced a new dynamical coordinate Zp’ (Fig. f) to calculate the free energy change required for converting a dinucleotide step from B- to A-form. Thereby, they captured the propensity of A- and B- form for all the different dinucleotides. Their calculations also revealed that the creation of a local dinucleotide gives rise to a penalty in terms of B/A junctions. Subsequently, they formulated a model to predict DNA conformation based on the absolute free energy change for a dinucleotide step from B- to A-form. They are currently working towards the goal to see whether the transition is nucleation driven and what the role of sequence dependence is. In continuation, AMG is working on DNA translocation through graphene nanopore. The objective is to study whether the structure of DNA has any role in translocation.

Single Water Entropy and its application in drug design It is known that when two species bind together in water, some water molecules go to the bulk. This process results in the increases in overall entropy of the system, thereby stabilizing the bound state. Significant effort in drug discovery focussed to find the low entropy water bound to the active site so that a particular drug can be designed to replace those making the bound complex free energetically stable.

AMG used permutation reduction approach (Fig. g) to calculate the entropy of a single water molecule around a bimolecular species. They showed that even in a particular protein cavity, water molecules possess different entropy (Fig. h). They also showed how the entropy of water changes as a function of distance from the particle. They are applying this method in various other systems such as hydrophobic and hydrophilic cavity (Fig. i), amino acids, DNA, etc.

Other Projects There are various other projects running in Arnab Mukherjee’s group. Some of the projects worth mention are collaborative in nature. With Dr. Partha Hazra, AMG has worked on the effect of urea in FAD conformation. With Dr. Pinaki Talukdar’s group, AMG has worked on the molecular picture of Cl- ion translocation through a synthetic ion channel (Fig. j). With Dr. Pankaj Mandal’s group, AMG is currently pursuing the structural, dynamical and spectroscopic signature of an azeotropic mixture (Fig. k).
Selective hydrogenation of acetylene to ethylene is an important chemical reaction. The catalyst used for this reaction should exhibit not only high reactivity but also high selectivity. The latter is necessary to prevent complete hydrogenation of acetylene to ethane. Pd is currently used as a catalyst in this reaction. However, Pd catalysts exhibit poor selectivity. In an effort to design new catalysts for this reaction, Prasenjit Ghosh's group used sub-nanometer bimetallic PdGa clusters in gas phase and studied the catalytic activity of these clusters for the above mentioned reaction. They found that though Pd,Ga clusters show high reactivity, they are not selective. However, Pd,Ga, clusters show large selectivity with reactivity slightly lower than the Pd,Ga clusters. For practical applications, the clusters are deposited on oxide supports. Presently their group is investigating the growth and formation of these clusters on MgO (a commonly used support). Further they are also investigating how the support effects the reactivity and selectivity of these clusters.

(b) Role of defects in the optical properties on CdS nanotubes

CdS nanostructures are prospective candidates for designing semiconductor based solar cells. However, during the growth process, several defects are found in these materials which significantly alter their optical properties. In collaboration with Dr. Shouvik Datta's group, Prasenjit Ghosh's group investigated the absorbance and photoluminescence properties of cadmium sulphide nanotubes with overall size beyond the quantum confinement regime. The experiments performed in Dr. Datta's group showed that while the absorption spectra are unaffected by the change in size of the nanotubes, there is an anomalous red shift in their photoluminescence spectra with increase in their size. With the help of density functional theory calculations performed by Prasenjit Ghosh's group, they have identified that the shift in the emission peak of the photoluminescence spectra is a result of the interplay between Cd vacancies on the surface of these nanotubes and the crystalline strain, which was incorporated in these nanotubes during their growth process. Most importantly the calculations show that rather than the defect concentration, it is the nature of the defect, which plays a crucial role in determining the optical properties of these nanotubes. For this particular case...
of CdS nanotubes it has been found that though S interstitials are the most abundant defects, it is the Cd vacancies with second lowest formation energies which significantly affect the photoluminescence spectra.

(c) Hydrogen induced spin reversal in graphene supported on Ni(111) surfaces

Prasenjit Ghosh’s group presents a novel way of changing the alignment of the induced magnetic moment of graphene supported on Ni(111) surface through hydrogenation. For the pristine graphene on Ni(111) surface, the magnetic moments on the fcc (top) C atoms are parallel (anti-parallel) with respect to those of the Ni atoms. The graphene sheet becomes ferrimagnetic with the average magnetic moment of the graphene sheet parallel with respect to that of the Ni atoms of the substrate. Through density functional theory based study, they show that this alignment can be controlled upon gradually hydrogenating the supported graphene layer. At maximum H coverage (0.5 ML), they find the supported hydrogenated graphene to be a ferromagnetic semiconductor, the average magnetic moment of the graphene sheet is anti-parallel with respect to the Ni atoms. Preliminary studies suggest that the hydrogenated graphene sheet can act as a tunneling barrier for magnetic tunnel junctions.

In summary, Prasenjit Ghosh’s group, using *ab initio* DFT has been able to identify sub-nanometer catalysts for different important industrial reactions, understand the role of defects in altering the electronic structure of materials and their effect on the optical properties. They have also been able to understand different important and novel physical and chemical properties in layered structures. This knowledge will provide valuable guidelines for experimentalists to synthesize new materials with desired properties.

Photoinduced Molecular Processes

Research in Anirban Hazra’s group focuses on studying excited state molecular phenomena. The emphasis is on understanding mechanism of such phenomena using tools from electronic structure theory and nonadiabatic dynamics. Several of these processes like photoinduced electron transfer, photodissociation and florescence quenching occur at the ultrafast or femtosecond timescale and play important roles in living organisms and in atmospheric processes. The detailed mechanistic understanding, that the group’s research seeks, is of basic scientific interest and is also important for its technological implications in solar-based renewable energy devices, particularly the conversion of solar energy to chemical energy. There are several projects going on in the group currently.

Excited-state hydrogen transfer (ESHT) is a reaction with major chemical and biological significance. The mechanism of
an ESHT reaction leading to tautomerization of \(\sigma \)-nitro toluene to its aci-nitro tautomer is being investigated. The reaction is found to proceed through a complex pathway, involving both singlet and triplet states. There are interesting topological features on the potential energy surfaces like two and three-state conical intersections that have been identified, and which are important for the reaction dynamics. A method to find three-state conical intersections has been developed and implemented.

Accurate modeling of nonadiabatic energy transfer during scattering of molecules from metal surfaces has been a challenge due to the large number of metal electrons that need to be included in the model for realistic simulations, which makes the quantum mechanical propagation of the wavefunction computationally very demanding. Few years back, a method called independent-electron surface hopping was proposed by Shenvi, Roy and Tully (J. Chem. Phys., 130, 174107 (2009)), that provides an approximate way to treat such systems. This method is being implemented and will be applied to to explain energy transfer to intra-molecular degrees of freedom during scattering of molecules from surfaces.

It has been recently observed through gas phase laser spectroscopy (by our experimental collaborators) that there exist at least two stable conformers for the weakly-bonded complex between fluorophenylacetylene (FPHA) and methylamine. It was found that one of the conformers was fluorescent while the other was not. Such a dramatic change to the optical properties due to a conformational difference, dictated by weak interactions, is intriguing. The mechanism for this phenomenon is being explored using the complete active space self-consistent field (CASSCF) electronic structure calculations. The presence of conical intersections and large vibronic coupling between states are hypothesized to cause the quenching of fluorescence, and this is being tested.

The research in Anirban Hazra’s group covers a diverse range of chemical phenomena involving excited states. Due to advances in spectroscopic techniques in recent decades, there is a huge amount of experimental data available on excited states, but the theory to interpret this is relatively nascent. The group sees this as an exciting opportunity and plans to continue contributing to the development of methods to understand excited state processes.

Stochastic Processes

Srabanti Chaudhury and her group is interested in developing theoretical models based on the principles of time dependent statistical mechanics and apply them to understand interesting problems in chemical physics, biological physics and soft condensed matter. Her group is actively investigating biological processes at the cellular level in which randomness and stochasticity play an important role and how the stochasticity that is inherent in its dynamics can be characterized and treated mathematically.

Understanding the interconnection between the specificity of an enzyme, the architecture of the active site and the kinetic mechanism of a reaction are of major importance. In one of the group’s recent work, she investigates the role of stochastic fluctuations in single molecule enzyme inhibition kinetics. The various ways in which these inhibitors can bind to the enzyme in competition with the substrate and mask the catalytic activity of the enzyme is important to
investigate as it could provide insight for designing inhibitors specific to certain enzymes/drugs. Srabanti Chaudhury has proposed a stochastic model that can be predictively utilized to successfully distinguish between different types of inhibition reactions types mechanisms depending upon the binding site of the enzyme.

Srabanti Chaudhury's group is working on understanding the role of stochastic fluctuations in mRNA levels on gene expression. They have proposed a new theoretical method to study the dynamics of switching in a two state gene expression model by explicitly accounting for the transcriptional noise. Analytical predictions are being tested with Monte Carlo simulations and experimental observations.

In summary, Srabanti Chaudhury's research mainly involves the development of analytical tools to study a wide variety of biological systems. Her analytical work is extremely challenging and is properly complemented with simulations and available experimental results.

In future, apart from modeling enzymes, Srabanti Chaudhury's group is also keen on modeling the catalytic activity of metal nanoparticles. Owing to their heterogeneous distribution of surface active sites and availability of two concurrent product dissociation pathways, it is challenging to model such systems theoretically. Srabanti’s group is also interested in understanding the role of protein pore interactions for translocation of polypeptides through nanopores. This work would involve theoretical modeling as well as detailed molecular dynamics simulations.
Chemistry Publications

60 Gourishankar, A.; Ganesh, K. N. (α, α-dimethyl)glycyl (dmg) PNAs: Achiral PNA Analogs that Form Stronger Hybrids with cDNA Relative to Isosequential RNA, Art DNA. *PN4:XNA.* 2012, 3, 1-9.

80 Bandyopadhyay, A.; Gopi, H. N. Hybrid Peptides: Direct Transformation of \(\alpha/\alpha\), \(\beta\)-Unsaturated \(\gamma\)-Hybrid Peptides to \(\alpha/\gamma\)-Hybrid Peptide 12-Helices. Org. Lett. 2012, 14, 2270.

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
</table>

199 Sunda A. P.; Venkatnathan A. Molecular Dynamics Simulations of Side Chain Pendant of Perfluorosulfonic Acid Polymer Electrolyte Membranes, J. Mater. Chem. A. 2013, 1, 557-569.

201 Sunda A. P.; Venkatnathan A. Parametric Dependence on Shear Viscosity of SPC/E Water from Equilibrium and Non-equilibrium Molecular Dynamics Simulations. Molecular Simulation 2013, 39, 728-733.

322 More M.; Sunda A. P.; Venkatnathan A. Polymer Chain Length, Phosphoric Acid Doping and Temperature Dependence on Structure and Dynamics of ABPBI [poly(2,5-benzimidazole)] Polymer Electrolyte Membrane. RSC Advances 2014, 4, 19746-19755.

External Research Grants

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of the Project</th>
<th>Project Leader</th>
<th>Sanctioning Authority</th>
<th>Period (From - to)</th>
<th>Sanctioned amount (Rs. in lakhs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material for Optoelectronics: Design, synthesis and of hybrid conjugated molecules with luminescent properties</td>
<td>Dr. V.G. Anand</td>
<td>DST</td>
<td>24-01-2006 to 31-09-2009</td>
<td>3.00</td>
</tr>
<tr>
<td>2</td>
<td>Development of electricity conducting polyanilinc nanomaterial</td>
<td>Dr. M. Jayakannan</td>
<td>DST</td>
<td>31-03-2008 to 30-03-2011</td>
<td>44.38</td>
</tr>
<tr>
<td>3</td>
<td>Modeling and simulation of polymer electrolyte membranes and molecular transport in fuel cells</td>
<td>Dr. Arun Venkatnathan</td>
<td>DST - SERB</td>
<td>12-03-2010 to 11-03-2013</td>
<td>26.37</td>
</tr>
<tr>
<td>4</td>
<td>Photoinduced electron transfer rate (between flavins and aromatic aminoacids) in nanocavity of proteins versus bulk waters</td>
<td>Dr. Partha Hazra</td>
<td>DST - SERB</td>
<td>23-03-2010 to 22-03-2013</td>
<td>16.44</td>
</tr>
<tr>
<td>5</td>
<td>Functionalized ribonucleoside analogues: Synthesis, site-specific enzymatic incorpora-tion and applications</td>
<td>Dr. Seerghazhi G. Srivatsan</td>
<td>DST - SERB</td>
<td>26-03-2010 to 25-03-2013</td>
<td>35.46</td>
</tr>
<tr>
<td>6</td>
<td>Development of green chemical melt transuretane reaction for polyurethanes</td>
<td>Dr. M. Jayakannan</td>
<td>DST - SERB</td>
<td>20-04-2010 to 19-04-2013</td>
<td>36.19</td>
</tr>
<tr>
<td>7</td>
<td>Investigation of gamma and hybrid gamma helical peptides as HIV-I fusuin inhibitors</td>
<td>Dr. Hosahudya Gopi</td>
<td>DST - SERB</td>
<td>20-04-2010 to 19-04-2013</td>
<td>33.90</td>
</tr>
<tr>
<td>8</td>
<td>Organic sources of gasesous entities with physiological relevance</td>
<td>Dr. Harinath Chakrapani</td>
<td>DST - SERB</td>
<td>07-03-2011 to 06-03-2014</td>
<td>26.00</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name of the Project</td>
<td>Project Leader</td>
<td>Sanctioning Authority</td>
<td>Period (From - to)</td>
<td>Sanctioned amount (Rs. in lakhs)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>9</td>
<td>Design and synthesis of functional framework materials based on P-N and P-O building blocks</td>
<td>Dr. R. Boomishankar</td>
<td>DST - SERB</td>
<td>31-12-2008 to 30-12-2011</td>
<td>19.68</td>
</tr>
<tr>
<td>10</td>
<td>Carbohydrate capped nanoparticles as tumor specific drug delivery systems</td>
<td>Dr. Raghavendra Kikkeri</td>
<td>DST and Max Planck Gesellschaft (DST-MPG)</td>
<td>01-04-2011 to 01-04-2014</td>
<td>37.27</td>
</tr>
<tr>
<td>11</td>
<td>Development and functional studies of homochiral inorganic - organic hybrid materials</td>
<td>Dr. Sujit K. Ghosh</td>
<td>DAE</td>
<td>16-08-2011 to 15-08-2014</td>
<td>16.44</td>
</tr>
<tr>
<td>12</td>
<td>Chiral lanthanide carbohydrate clusters for studying carbohydrate - protein interactions</td>
<td>Dr. Raghavendra Kikkeri</td>
<td>DAE</td>
<td>16-08-2011 to 15-08-2014</td>
<td>16.16</td>
</tr>
<tr>
<td>13</td>
<td>Total synthesis of natural benzo(c) phenanthridine alkaloids by metal-catalyzed cyclization or C-H bond activation reaction as a key step</td>
<td>Dr. Masilamani Jeganmohan</td>
<td>DAE</td>
<td>16-08-2011 to 15-08-2014</td>
<td>16.99</td>
</tr>
<tr>
<td>14</td>
<td>Directed assembly of poly-nuclear Ru (II) complexes on carbon nanostructures : A prospective organic photovoltaic cells</td>
<td>Dr. Raghavendra Kikkeri</td>
<td>DST - SERB</td>
<td>27-09-2011 to 26-09-2013</td>
<td>19.44</td>
</tr>
<tr>
<td>15</td>
<td>Study of transmembrane ion channel activity of cyclo-(1-6)-B-D-glucosamine derivatives and evaluation of their antibacterial potential</td>
<td>Dr. Pinaki Talukdar</td>
<td>DST - SERB</td>
<td>29-09-2011 to 28-09-2013</td>
<td>13.92</td>
</tr>
<tr>
<td>16</td>
<td>New insight of flavin-aptamer recognition process with the help of biophysical studies</td>
<td>Dr. Partha Hazra</td>
<td>CSIR</td>
<td>01-01-2012 to 31-12-2014</td>
<td>6.70</td>
</tr>
<tr>
<td>17</td>
<td>Conformation of microhydrated peptides: Laser-desorption jet-cooled studies</td>
<td>Dr. Aelope Das</td>
<td>DST - SERB</td>
<td>01-03-2012 to 28-02-2015</td>
<td>39.60</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name of the Project</td>
<td>Project Leader</td>
<td>Sanctioning Authority</td>
<td>Period (From - to)</td>
<td>Sanctioned amount (Rs. in lakhs)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Two-dimensional metal - organic coordination networks</td>
<td>Dr. Nirmalya Ballav</td>
<td>DAE</td>
<td>05-03-2012 to 04-03-2015</td>
<td>17.00</td>
</tr>
<tr>
<td>19</td>
<td>Application of the chemistry lab skills teaching resources to the Indian education system</td>
<td>Dr. Harinath Chakrapani</td>
<td>BC</td>
<td>01-01-2012 to 31-12-2012</td>
<td>3.10</td>
</tr>
<tr>
<td>20</td>
<td>Collaboration in medical chemistry between IISER Pune and Keele University, UK under UKIERI Programme</td>
<td>Prof. K.N. Ganesh British Council Division</td>
<td>01-04-2012 to 31-03-2013</td>
<td>8.15</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Palladium catalyzed chelation assisted C-H bond functionalization of aromatics, alkenes and alkanes</td>
<td>Dr. M. Jeganmohan DST - SERB</td>
<td>03-07-2012 to 02-07-2015</td>
<td>45.99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Functional studies of novel inorganic-organic hybrid frameworks with guest accessible sites</td>
<td>Dr. Sujit Kumar Ghosh DST - SERB</td>
<td>05-07-2012 to 04-07-2015</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Development and application of theoretical methods for mechanistic understanding of ultrafast photoinduced molecular processes</td>
<td>Dr. Anirban Hazra DST - SERB</td>
<td>03-08-2012 to 02-08-2015</td>
<td>23.90</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Enovex Technology Ltd</td>
<td>Dr. R. Vaidhyanathan Enovex-IISER Pune Agreement</td>
<td>01-04-2012 to Open Ended</td>
<td>112.84</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Redox-directed mycobacterial therapeutics</td>
<td>Dr. Harinath Chakrapani</td>
<td>DBT</td>
<td>28-09-2012 to 27-09-2015</td>
<td>56.70</td>
</tr>
<tr>
<td>26</td>
<td>Ramanujan Fellowship</td>
<td>Dr. Angshuman Nag DST-SERB</td>
<td>29-10-2012 to 28-10-2017</td>
<td>73.00</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fluorescent nucleoside based amphiphiles: Synthesis, self assembly properties and applications</td>
<td>Dr. Seerghazhi G. Srivatsan CSIR</td>
<td>01-11-2012 to 30-10-2015</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>FIST Program-2012 [48]</td>
<td>Prof. K.N. Ganesh DST</td>
<td>07-01-2013 to 06-01-2018</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name of the Project</td>
<td>Project Leader</td>
<td>Sanctioning Authority</td>
<td>Period (From - to)</td>
<td>Sanctioned amount (Rs. in lakhs) ₹</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>29</td>
<td>Dynamical effects in the mechanism of intercalation of anti-cancer drugs</td>
<td>Dr. Arnab Mukherjee</td>
<td>DST - SERB</td>
<td>13-06-2013 to 12-06-2016</td>
<td>54.75</td>
</tr>
<tr>
<td>30</td>
<td>Peripherally functionalized siloxane scaffolds for the assembly of multi-metallic cages, clusters and supramolecules</td>
<td>Dr. R. Boomishankar</td>
<td>DST - SERB</td>
<td>13-06-2013 to 12-06-2016</td>
<td>53.00</td>
</tr>
<tr>
<td>31</td>
<td>Design, synthesis and characterization of modified dipyrrins and its complexes</td>
<td>Dr. V.G. Anand</td>
<td>DST - SERB</td>
<td>17-6-2013 to 16-6-2016</td>
<td>50.00</td>
</tr>
<tr>
<td>32</td>
<td>Studies on non-covalent modulation of gating and selectivity of synthetic ion channels</td>
<td>Dr. Pinaki Talukdar</td>
<td>DST - SERB</td>
<td>1-7-2013 to 30-6-2016</td>
<td>52.00</td>
</tr>
<tr>
<td>33</td>
<td>Molecular modelling and simulation of nanostructure and dynamics of ionic liquid doped polymer electrolyte membrane fuel cells</td>
<td>Dr. Arun Venkatnathan</td>
<td>DST - SERB</td>
<td>05-09-2013 to 04-09-2016</td>
<td>55.00</td>
</tr>
<tr>
<td>34</td>
<td>Engineering novel supramolecular nanoplatform for paclitaxel delivery in cancer</td>
<td>Dr. Sudipta Basu</td>
<td>DST - SERB</td>
<td>06-09-2013 to 05-09-2016</td>
<td>24.48</td>
</tr>
<tr>
<td>35</td>
<td>Ligand-free colloidal all-inorganic semiconductor nanocrystals: Synthesis, photophysics and optoelectronic application</td>
<td>Dr. Angshuman Nag</td>
<td>DST - SERB</td>
<td>30-12-2013 to 29-12-2016</td>
<td>25.00</td>
</tr>
<tr>
<td>36</td>
<td>Glycochemical studies of mycobacterial arabinomycolate</td>
<td>Dr. Srinivas Hotha</td>
<td>IFCPAR</td>
<td>01.04.2014 to 31.3.2017</td>
<td>61.80</td>
</tr>
<tr>
<td>38</td>
<td>Development and functional studies of metal-organic polyhedras (MOPs)</td>
<td>Dr. Sujit Kumar Ghosh</td>
<td>INSA</td>
<td>13-05-2014 to 12-04-2017</td>
<td>5.00</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name of the Project</td>
<td>Project Leader</td>
<td>Sanctioning Authority</td>
<td>Period (From - to)</td>
<td>Sanctioned amount (Rs. in lakhs) ₹</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>39</td>
<td>Design and development of amino acid based polymer scaffolds for drug delivery</td>
<td>Dr. M. Jayakannan</td>
<td>DST - SERB</td>
<td>04-08-2014 to 03-08-2017</td>
<td>102.00</td>
</tr>
<tr>
<td>40</td>
<td>CoE FAST</td>
<td>Prof. K.N. Ganesh</td>
<td>MHRD</td>
<td>01-10-2014 to 30-09-2019</td>
<td>400.00</td>
</tr>
<tr>
<td>41</td>
<td>Porphyrin, chlorin and isophlorin based near infrared dyes for high-efficiency dye-sensitized solar cells: an inspiration from nature (Indo-Singapore)</td>
<td>Dr. V.G. Anand</td>
<td>DST - SERB</td>
<td>30-08-2014 to 29-08-2017</td>
<td>43.67</td>
</tr>
<tr>
<td>42</td>
<td>Introduction of silylene in frustrated Lewis pair chemistry and their reactivity towards small molecules</td>
<td>Dr. Shabana Khan</td>
<td>DST - SERB</td>
<td>18-09-2014 to 17-09-2017</td>
<td>44.30</td>
</tr>
<tr>
<td>43</td>
<td>Ruthenium-catalysed meta selective C-H Bond functionalization of substituted aromatics</td>
<td>Dr. M. Jeganmohan</td>
<td>CSIR</td>
<td>01-10-2014 to 30-09-2014</td>
<td>9.00</td>
</tr>
<tr>
<td>44</td>
<td>Ruthenium catalyzed highly regio- and stereoselective oxidative coupling of Π-components: A versatile route to substitute alkenes, dienes and heterocycles</td>
<td>Dr. M. Jeganmohan</td>
<td>INSA</td>
<td>01-11-2014 to 31-10-2017</td>
<td>5.00</td>
</tr>
<tr>
<td>45</td>
<td>Design and synthesis of covalent and non-covalent composites from aromatic and antiaromatic macrocycles for molecular diode (Swarnajayanti Fellowship)</td>
<td>Dr. V.G. Anand</td>
<td>DST - SERB</td>
<td>03-11-2014 to 02-11-2019</td>
<td>195.21</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2493.2</td>
</tr>
</tbody>
</table>
Conferences, Symposia and Events

Inter-IISER Chemistry Meet
December 22-23, 2008

IISER Pune organized a two-day meet with the main objective of bringing all faculty members in chemistry in all IISERs together to establish professional contacts, exchange their scientific ideas and to share their teaching experiences. The first Inter IISER Chemistry Meet started with Prof. C.N.R. Rao’s plenary talk on “Novel Chemistry with Nanomaterials”.

Visit of IISER delegation to University of Goettingen, Germany
December 9-12, 2010

A group of faculty from Chemistry group of IISER Pune, led by Dr. KN Ganesh, Director, visited University of Goettingen to participate in a 3-day seminar on Bioinspired Chemistry: from assembly to function. The German side consisting of eight faculty from the Institute of organic and biomolecular chemistry of Goettingen University was led by Prof U Diederschen, the Director of the host institute. The objective of the workshop was to understand each other’s research interests and establish an international research and training group (IRTG) as envisaged by the Deutsche Forschung Gemeinschaft (DFG) in Bioorganic Chemistry. All aspects of bioorganic chemistry ranging from oligonucleotides, peptides /proteins etc. were discussed and many complementary areas could be identified for future collaboration.

Max Planck Partner Group in Glyconanotechnology
November 14, 2011

The Max Planck Partner Group in Glyconanotechnology has been sanctioned with Dr. Raghavendra Kikkeri as the head at the Indian side and Prof. Peter H. Seeberger as the Head at the German side. The partnership is aimed to further collaboration in carbohydrate research at IISER Pune and MPI of Colloids and Interfaces. The research in this project will focus on engineering of multifunctional
nanoparticles that will exploit biological processes to guide the carbohydrate mediated targeting, self assembly and remote actuation of nanoparticles to treat tumours in mouse models of cancer. The centre was formally inaugurated by Prof. P.H. Seeberger on 14 Nov 2011.

Mini-symposium on Chemical Biology
November 14, 2011

To coincide with the Inauguration of the MPI Partner Group in Glyco-nanotechnology, a one-day mini-symposium was organized on November 14, 2011. There were three sessions chaired by Prof. K.N. Ganesh, Prof. Ulf Diederichsen and Prof. Mike Blackburn. The speakers in this symposium were Prof. Peter H. Seeberger (Carbohydrate-based Nanotechnology), Sanjeev Galande (Chromatin organiser SATB1 as a molecular target for anticancer therapy), Dilip Dhavale (Fused, constrained and spiro iminosugars: Synthesis, glycosidase inhibitory and immunomodulatory activity study), Dipankar Chatterjee (Inhibitors of transcription and rescuing a drugged RNA polymerase), Raghavendra Kikkeri (Carbohydrate embedded Fe(III) complexes as biomimetic siderophores), Mike Blackburn (Recent advances in enzyme catalyzed phosphoryl transfer), Rajesh Gokhale (Systems-based analysis of chemical complexity and metabolic diversity), Harinath Chakrapani (Controlled generation of biologically reactive sulphur and oxygen species for therapeutic applications), Aurnab Ghose (Forming neuronal circuits: the role of extracellular matrix molecules), Souvik Maiti (Silencing of microRNAs with antagonirzmes and small molecules), Ulf Diederichsen (Building with peptide secondary structures), G.J. Sanjayan (From peptides to foldamers: Non-covalent interactions in structural design), H.N. Gopi (Design and conformational studies of functionalizable hybrid peptides), Saikrishnan Kayarat (Structural studies on motor-driven protein machines), S.G. Srivatsan (Synthesis, incorporation and applications of functionalized ribonucleoside analogues).

Mini Symposium on Materials
December 21, 2011

A one-day Mini Symposium on Novel Materials was held on December 21, 2011 and a dozen experts have presented their work related to the theme of the meeting. Prof. Ganesh, Director, IISER Pune welcomed the gathering and offered comments. The Inaugural lecture was given by Prof. P.V. Kamat, Radiation Laboratory, University of Notre Dame on ”Nanostructure assemblies for solar energy conversion” followed by talks by speakers from IISER Thiruvananthapuram, NCL, Pune; BARC, Mumbai; and IISER Pune.

Mini-Symposium on Mass Spectrometry in Chemistry and Biology
March 12, 2012

The Mass Spectrometry Facility at the Institute was inaugurated on 12 March 2012 by Dr. Sourav Pal (Director, NCL). On this occasion a one-day mini-symposium on Mass Spectrometry in Chemistry and Biology was organized. The speakers in this symposium were:

- Dr. Pradeep Thalappil - Advanced Mass Spectrometry to understand Nanomaterials
- Dr. Alok Das - Gas Phase Electronic and Vibrational Spectroscopy in a Jet-cooled Laser Desorption Time of Flight Mass Spectrometer
- Dr. Ramakrishnan Nagaraj – Mass Spectrometry: Friend or Foe for Protein
Practical Applications of Modern Tools in Organic Synthesis and Purifications II (PAMTOSP 2)
April 2-4, 2012

IISER Pune organized 3-day workshop during April 2-4, 2012 on Practical Applications of Modern Tools in Organic Synthesis and Purifications II (PAMTOSP 2) under the prime sponsorship of Royal Society of Chemistry, UK. This event was also cosponsored by various Indian and multi-national companies and was attended by participants from diverse range of backgrounds. The workshop was inaugurated by Dr. Sourav Pal, Director, NCL, Pune. Others present for the inauguration were: Dr. K.N. Ganesh, Director, IISER Pune, Mr. David Clark from
RSC, UK, Ms. Jayshree Mistry from GSK and Mr. Rajesh Parishwad from RSC, India. Among the 200 participants, students, academician and industry-based participants are the major. This 3-day event covered a historical overview of high throughput chemistry, use of reagents and scavengers in organic chemistry, solution phase methodology for parallel chemistry, use of solid phase in organic chemistry, purifications technologies for high throughput chemistry, new developments and techniques in organic chemistry, practical demonstration workshops and computational tools for library design. Lectures and demonstrations were given by eminent persons from academia and industry from both India and abroad.

Mini-symposium on Spectroscopy and Dynamics

April 20, 2012

This mini-symposium organized by Dr. Alok Das at IISER Pune on April 20, 2012 was part of annual activities of ISRAPS (Indian Society for the Radiation and Phytochemical Society), BARC, Mumbai. The meeting covered discussion on a broad range of spectroscopy including Femtosecond transient absorption, Terahertz, Resonance Raman, Femtosecond stimulated Raman, Fluorescence, Gas phase photodissociation dynamics in supersonic jet, Photoluminescence microscopy and simulation on dynamics of DNA intercalation. About 100 participants including students and faculty from TIFR, BARC, IIT Mumbai, University of Pune and IISER Pune were present for the meeting. We had total eight speakers from various institutes like IIT Mumbai, BARC, TIFR and IISER Pune. Prof. L.S. Shashidhara, IISER Pune presented opening remarks by briefly mentioning about scientific activities of IISER Pune. Dr. Tulsi Mukherjee, Director, Chemistry Division, BARC, inaugurated the symposium.

National Workshop on Polymer Solar Cells (NWPSC-2012)

April 21-22, 2012

A national workshop on polymer solar cells (NWPSC-2012) was organized with the support of Department of Science and Technology, Govt. of India. The workshop was coordinated by Prof. R.P. Singh and Dr. Shouvik Datta.
IISER Pune-University of Glasgow Bilateral Symposium on Structure and Dynamics
December 10-12, 2012

A joint symposium with the Universities of Glasgow and Strathclyde on Structure and Dynamics was held at IISER Pune during December 10-12, 2012 under the auspices of the UKIERI. Ten faculty members from the two universities visited IISER Pune to participate at the symposium. About 15 faculty members from IISER Pune presented their work. More than 50 research students presented posters in the meeting. Some of the speakers at this symposium were Prof. Krishna Ganesh, Prof. Klaas Wynne, Dr. Mrinalini Puranik, Dr. Goetz Bucher, Dr. Serena Korr, and Dr. M. Jayakannan.

International Meeting on Chemical Biology (IMCB-2013)
May 26-28, 2013

IMCB-2013 is an initiative by IISER Pune to foster interest amongst Indian scientific community in the emerging field of Chemical Biology. The conference was inaugurated by Prof. C.N.R. Rao. Leading and pioneering researchers from both academia and industry from around the world showcased the challenges and latest developments in the field of Chemical Biology. The sessions were nicely balanced with a wide range of topics covering biomolecular structure and function to therapeutics. There were 28 invited talks and several poster presentations. A special session was also arranged to commemorate the 60th anniversary of the discovery of the DNA double helix structure. The meeting was coordinated by Dr. Srinivas Hotha and Dr. Srivatsan.
DST FIST Committee Meeting
September 29, 2012

The Chemistry group of the Institute submitted an application for grant under the DST's FIST (Funds for Infrastructure in Science and Technology) program. As a part of the requirement, the members of the Committee visited the institute on September 29, 2012 to assess the available infrastructure and academic achievements. Subsequently, DST sanctioned ₹6.0 crores for equipping the labs with 600MHz NMR and other equipment. The process of application and defending the proposal was managed by Dr. Jayakannan and Dr. Srinivas Hotha under the guidance of Prof. Ganesh.

Satellite Meeting of the Frontiers in Chemistry and Biology of Oligosaccharides (FCBO-2014)
January 18-19, 2014

The topics covered were (a) approaches to understanding the structure, dynamics and function of oligosaccharides, (b) glycoconjugates and carbohydrate vaccines, (c) challenges in the synthesis of glycoconjugates and (d) biomolecular self-assemblies. There were 25 invited talks. Some of the speakers were: Alexei Demchenko, University of Missouri, St. Louis, USA; Amit Basu, Brown University, U.S.A., Joseph Barchi Jr. National Cancer Institute, Frederick, USA; Cristobel Lopez, Instituto de quimica Organica General, Juan de la Cierva 3, Madrid, Spain; Daniel Werz, Technische Universitetaet Braunschweig, Germany; Hien Nguyen, University of Iowa, U.S.A.; B. Maria Pinto, Simon Fraser University, Vancouver, Canada; Mikael Bols, Kemisk Institut, Copenhagen, Denmark; Monica Paicic, Carlsberg Laboratory, Copenhagen, Denmark; Ole Hidsgaul, Carlsberg Laboratory, Denmark; George Oodoherty, Northeastern University, Boston, U.S.A.; Francesco Nicotra, University of Milano-Bicocca, Italy; Shang-Cheng Hung, Academia Sinica, Taipei, Taiwan; Todd Lowary, University of Alberta, Edmonton, Canada; Herman Overkleeft, Leiden Institute of Chemistry, Leiden, Sweden; Aloysius Serianni, CNRS Research (HDR), France; and Anthony Serianni, University of Notre Dame, Indiana, U.S.A..

Speakers from India were: Chitra Mandal, IICB, Kolkata; Dilip Dhavale, University of Pune; Raghavendra Kikkeri, IISER Pune; Chepuri Ramana, NCL, Pune; Suvarn Kulkarni, IIT, Bombay; Srinivas Hotha, IISER Pune; B. Venkateswara Rao, IICT, Hyderabad; and Kana Sureshan, IISER, Thiruvananthapuram. Over 160 participants registered for this meeting which was organized by Dr. Srinivas Hotha.
National Workshop on Fluorescence and Raman Spectroscopic Techniques
December 15-19, 2014

Dr. Mrinalini Puranik and colleagues organized a national workshop on fluorescence and Raman spectroscopic techniques at IISER Pune in December 2014. This unique workshop provided hands-on training to students, post-doctoral researchers and young faculty in the state-of-the-art laser based spectroscopic techniques present at IISER Pune. Theoretical and experimental concepts in spectroscopy were taught by practicing research scientists from India and abroad along with IISER faculty. A novel concept implemented at IISER Pune was a round-table discussion session on each technique. These discussions were led by practicing researchers and were aimed at providing advice on problems faced by participants in various applications. Other highlights of the meeting were the teaching sessions on three different techniques of super-resolution spectroscopy and training in assembling cost-effective fluorescence and Raman instrumentation. Thirty five senior scientists taught and presented their research to over a hundred participants from all over the country.

Theoretical Chemistry Symposium
December 18-21, 2014

The fourteenth Theoretical Chemistry Symposium (TCS) was organized by CSIR- National Chemical Laboratory (CSIR-NCL), Pune and IISER Pune from December 18-21, 2014. IISER Pune organized all the talks of the symposium on December 20th. Held biennially, TCS is the largest platform for theoretical and computational chemistry research in India. The focus of this symposium is to converge a large number of researchers working in diverse areas involving quantum mechanics, statistical mechanics, computational sciences, algorithm development and encompassing numerous applications including chemical reaction mechanisms and pathways, material science and nanotechnology, polymer physics and chemistry, biological systems and bio-nano interfaces. The symposium was attended by 10 international speakers, 65 national speakers, 400 students and other faculty participants. Approximately, 300 posters were presented during the symposium.
Visitors

Distinguished Scientists who have visited IISER Pune

Prof. Jean-Marie Lehn
Université de Strasbourg, France
Nobel Laureate in Chemistry (1987)

Prof. George Whitesides
Harvard University, USA

Prof. Ei-ichi Negishi
Purdue University, USA
Nobel Laureate in Chemistry (2010)

Prof. Venki Ramakrishnan
MRC Laboratory of Molecular Biology, UK
Nobel Laureate in Chemistry (2009)

Prof. Jeremy Sanders
University of Cambridge, UK

Prof. C. N. R. Rao
JNCASR, Bangalore, India
Department Statistics

Cumulative numbers in parentheses
Instrument facilities in Chemistry

<table>
<thead>
<tr>
<th>Name of Equipment</th>
<th>Year of Purchase</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Scanning Calorimeter (DSC)</td>
<td>2008</td>
<td>TA</td>
</tr>
<tr>
<td>Thermogravimetric Analyzer (TGA)</td>
<td>2008</td>
<td>STA 6000, Perkin Elmer</td>
</tr>
<tr>
<td>Gel Permeation Chromatography (GPC)</td>
<td>2008</td>
<td>Viskotek Europe Ltd.</td>
</tr>
<tr>
<td>High Performance Liquid Chromatography - HPLC (6)</td>
<td>2008-2011</td>
<td>DIONEX, Waters, Agilent</td>
</tr>
<tr>
<td>Gas Chromatography - MS (GC-MS)</td>
<td>2008</td>
<td>GC-2010, Shimadzu</td>
</tr>
<tr>
<td>Gas Chromatography (GC)</td>
<td>2013</td>
<td>GC- 2014, Shimadzu</td>
</tr>
<tr>
<td>Liquid Chromatography - MS (LC-MS)</td>
<td>2011</td>
<td>Waters</td>
</tr>
<tr>
<td>High Resolution Mass spectrometer (HRMS)</td>
<td>2011</td>
<td>SYNAPT G2 HDMS Hybrid, Waters</td>
</tr>
<tr>
<td>Polarizing Light Microscope</td>
<td>2008</td>
<td>Leica DM2500P Microscope with DFC500 Camer</td>
</tr>
<tr>
<td>CHN Analyzer</td>
<td>2010</td>
<td>Vario EL cube, Elementar Analysensysteme GmbH</td>
</tr>
<tr>
<td>Gas adsorption Instrument</td>
<td>2010</td>
<td>Max Adsorption, aqua3 (BEL Japan Inc International Division)</td>
</tr>
<tr>
<td>UV-Vis Absorbance Spectrophotometer - 4 Nos</td>
<td>2008-2010</td>
<td>Chemito UV 2600 -4 nos, Evolution 300 - 01 nos, Varian Model Cary 300 Bio-2 nos, Lambda 45, Lambda 35, Shimadzu UV-VIS Spectrophotometer-3,</td>
</tr>
<tr>
<td>Steady State Fluorescence Spectrophotometer</td>
<td>2011</td>
<td>Flurolog - 3, Fluromax- 02 nos</td>
</tr>
<tr>
<td>Pico-second TCSPC Life time setup</td>
<td>2008</td>
<td>Assembled</td>
</tr>
<tr>
<td>Circular Dichroism (CD)</td>
<td>2009</td>
<td>J-815 CD Spectrometer, Jasco</td>
</tr>
<tr>
<td>FT-IR Spectrometer</td>
<td>2008</td>
<td>Nicolet 6700 FT-IR, Thermo</td>
</tr>
<tr>
<td>Isothermal Calorimeter (ITC)</td>
<td>2008</td>
<td>Itc200, Micro Cal</td>
</tr>
<tr>
<td>Cyclic Voltametry (CV)</td>
<td>2008</td>
<td>EPSILON2</td>
</tr>
<tr>
<td>Dynamic Light Scattering (DLS)</td>
<td>2009</td>
<td>MALVERN</td>
</tr>
<tr>
<td>Automatic Solution Viscometer</td>
<td>2008</td>
<td>Schott - Instruments - GmbH</td>
</tr>
<tr>
<td>Name of Equipment</td>
<td>Year of Purchase</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Four Probe Conductivity Set-up</td>
<td>2008</td>
<td>PID-200 KETHLEY</td>
</tr>
<tr>
<td>Microwave-based Peptide Synthesizer</td>
<td>2011</td>
<td>CEM</td>
</tr>
<tr>
<td>DNA Synthesizer</td>
<td>2010</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>Peptide Synthesizer</td>
<td>2008</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>Cooling cabinet - 3 nos</td>
<td>2010</td>
<td>UNICHROMAT 1500 PRO</td>
</tr>
<tr>
<td>MALDI-TOF-TOF-MS</td>
<td>2008</td>
<td>4800 Plus, Applied Biosystems</td>
</tr>
<tr>
<td>Single crystal X-ray Instrument - Institute Facility</td>
<td>2010</td>
<td>Brucker</td>
</tr>
<tr>
<td>Wide Angel Powder X-ray diffraction Instrument</td>
<td>2010</td>
<td>Brucker</td>
</tr>
<tr>
<td>500 MHz Bucker NMR - Institute Facility (Central)</td>
<td>2008</td>
<td>Brucker</td>
</tr>
<tr>
<td>400 MHz JEOL NMR- Institute Facility (Central)</td>
<td>2008</td>
<td>Jeol</td>
</tr>
<tr>
<td>Automated Flash Chromatography system</td>
<td>2014</td>
<td>Yamazen</td>
</tr>
<tr>
<td>Steady state fluorescence spectrometer</td>
<td>2014</td>
<td>EDINBURH INSTRUMENTS FLS 980</td>
</tr>
<tr>
<td>600 MHz NMR Spectrometers</td>
<td>2014</td>
<td>Bruker</td>
</tr>
<tr>
<td>400 MHz NMR Spectrometers</td>
<td>2014</td>
<td>Bruker</td>
</tr>
<tr>
<td>Single Crystal X-Ray Diffractometer</td>
<td>2014</td>
<td>Bruker</td>
</tr>
<tr>
<td>Glove box & solvent purification system</td>
<td>2014</td>
<td>MBraun</td>
</tr>
<tr>
<td>Nano Drop 8000 Spectrophotometer</td>
<td>2014</td>
<td>Thermofischer</td>
</tr>
<tr>
<td>Femtosecond Fluorescence up conversion</td>
<td>-</td>
<td>Assembled</td>
</tr>
<tr>
<td>Gas Phase Spectroscopy</td>
<td>-</td>
<td>Assembled</td>
</tr>
<tr>
<td>Ultraviolet Resonance Raman Instrument</td>
<td>-</td>
<td>Assembled</td>
</tr>
<tr>
<td>Free Raman Imaging Microscope</td>
<td>-</td>
<td>Assembled</td>
</tr>
</tbody>
</table>

Differential Scanning Calorimeter (DSC)

Thermogravimetric Analyzer (TGA)
Gas Chromatography

Gas Chromatography-Mass Spectrometry (GC-MS)

Gel Permeation Chromatography (GPC)

High Performance Liquid Chromatography- HPLC
Make – DIONEX
High Performance Liquid Chromatography (HPLC)
Make: Agilent

Polarizing Light Microscope
Make: Leica

High Performance Liquid Chromatography - HPLC
Make: WATERS

CHN Analyzer

Gas adsorption Instrument
UV-Vis Absorbance Spectrophotometer Make – THERMO

UV-Vis Absorbance Spectrophotometer Make – SHIMADZU

UV-Vis Absorbance Spectrophotometer Make – PERKIN ELMER

Fluorescence Spectrophotometer
Make: HORIBA
MODEL:Fluoromax-4
Fluorescence Spectrophotometer - Fluorolog
Make: HORIBA

Pico-second TCSPC
Life time setup

Circular Dichroism (CD)
Make: JASCO

FT-IR Spectrometer
Make: THERMO
Isothermal Calorimeter (ITC)
Make- MIRCOCAL ITC200

Cyclic Voltametry (CV)

Dynamic Light Scattering (DLS)
Make: MALVERN

Automatic Solution Viscometer
Make: SCHOTT
Four Probe Conductivity Set-up
Make: KETHLEY

Microwave-based Peptide Synthesizer
Make: CEM

DNA Synthesizer
Make: APPLIEDBIOSYSTEMS

PEPTIDE SYNTHESIZER
Make: APPLIEDBIOSYSTEMS

COOLING CABINET
UNICHROMAT 1500 PRO

MALDI-TOF-TOF-MS
Make: APPLIEDBIOSYSTEMS
High Resolution Mass spectrometer (HRMS)
Make - WATERS

Single crystal X-ray Instrument
Make - BRUKER

Wide Angel Powder X-ray diffraction Instrument
Make: BRUKER

500 MHz Brucker NMR

400 MHz JEOL NMR

600 MHz Brucker NMR

400 MHz Brucker NMR

Glove Box & Solvent Purification System
Make- M BRAUN

Terahertz Spectroscopy
Femtosecond Fluorescence Up Conversion

Gas Phase Laser Spectroscopy

Ultraviolet Resonance Raman Instrument
Research Laboratory in Mendeleev

Instrumentation Facility for Undergraduate Students

Chemical Laboratory Facility for Undergraduate Students
Safety in Chemistry@IISER Pune

Environment, Health and Safety Committee, IISER Pune

IISER Pune Safety Committee (EHSC) works to fulfil its mission of safety and scope of its service. EHSC has good representation from academic departments and receives helpful administrative support.

Safety Goals: Reviewing Safety and Chemical Hygiene Plan (CHP); Conducting general and laboratory safety training, laboratory inspections and incident reporting; targeting specific safety issues identified during laboratory inspections; enhancing the awareness general and Lab Safety among IISER fraternity, evaluating undergraduate teaching lab safety, revival of Safety Manual.

Accomplishments:

Chemical Hygiene Plan (CHP): The EHSC continues to review and update safety-related policies, procedures and appendices. The primary goals of the program are to increase awareness, communication and safety team (Emergency Response Team) and to ultimately promote a culture of safety and trust at IISER Pune.

General Safety and Laboratory Safety Training

- EHSC, IISER-Pune as a regular practice conducts safety training for all students and staff by a professional authorized agency. IISER Pune conducts Basic fire safety and Life Saving Skills programme biannually. During the academic year beginning undergraduates (new batch) are exposed to training followed by PhD/project students/security staff and lab assistants.

- Institute has a safety manual for students' benefits and education for the safe practices.

Following very Important Hands on Skills are usually taught during the Programme:

Fire Fighting during Safety Training Programme
CPR (Cardio Pulmonary Resuscitation) on a Mannequin. Artificial Respiration, Chest Compressions, First Aid: Managing Wounds, Fractures, Bleeding, First Aid to Electrocution, Treating a Choking Victim, Fire Prevention and Fire Fighting, Chemistry and Classification of Fire, Practical use of Fire Extinguishers on Live Fire, LPG and Domestic Safety, Fighting Fire without Extinguishers, First Aid for Fire Burns and Life Saving Techniques. Safety presentations were also delivered to PhD students to teach the safe practices in laboratories across the divisions. Few images of Safety training are attached.

- EHSC focuses on procuring personal protective equipment (PPEs) for the undergraduate and research students every year.
 - IISER-Pune invested on quality lab coats and goggles. It is compulsory to wear personal protective equipment to avoid the health hazard in the laboratories.
 - First Aid box has been installed in each and every lab, Lecture Hall complex and also in few main receptions.
 - Fluorescent signage boards for the safety exits and for the safe guidelines have been installed in the labs and common areas.
 - Special Masks, stretchers, safety ladders have been procured
 - Based on the need safety fire extinguishers are procured and refilled

- Chemical Waste Management/Disposal:
 - Students have been trained to segregate the chemical waste
 - Halogenated and non-halogenated solvent waste are collected in a separate containers
 - Silica gel, sand, Sodium sulphate, etc are collected as solid waste separately
 - Sharp items such as broken glassware, needles waste are segregated

IISER Pune has a contract with a government authorized agency to dispose the waste generation.

- Water Management: IISER Pune has built water purification plant for the drainage water waste.

- Inspection and Incident Reporting: As a common practice lab visits are done by the safety committee regularly. Safety visits are of two types one is routine safety visit and another one is a surprise visit. In the routine safety checks students are taken on a round to teach them about different kinds of safety measures and hazards due to ill plans.

- **RSC-CRSI-IISER-NCL Safety Workshop, April 2014 held @ IISER Pune**

Under the banner RSC (UK)–CRSI, India we arranged first of its kind one day Safety Workshop on “Safety in Chemical lab” for college and universities students and faculty. There were around 100 participants for this workshop. Director IISER Pune and Director, NCL inaugurated the workshop with initial remarks. Morning session had lectures on safety by experts in safety from RSC members, UK and experts from India. Afternoon, practical workshop was conducted in few groups.

EHS Committee

<table>
<thead>
<tr>
<th>Dr. Ramakrishna G. Bhat (Chairperson)</th>
<th>Dr. Girish Ratnaparkhi (Member)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sunil Nair (Member)</td>
<td>Dr. Y. Rajput (Member)</td>
</tr>
<tr>
<td>Dr. Partha Hazra (Member)</td>
<td>Dr. Shabana Khan (Member)</td>
</tr>
</tbody>
</table>
Lab Safety Rules

POLICIES

- Ensure safe handling of chemicals by referring to Material Safety Data Sheet (MSDS) or ask the supervisor.
- Before carrying out the reaction (experiment) or use of any instruments ask the supervisor for the assistance.
- Know the location of the (i) "Emergency Shut-Off" switches in the lab and instrument room (ii) Emergency Exits and (iii) fire extinguishers.
- Report "All" accidents, no matter how minor, to the Supervisor/Safety In-Charge immediately.
- Do not work alone in the laboratory.
- Student with medical/Health concerns should seek the advice of a Doctor before attending labs.

RULES

- Wear approved safety goggles and lab coat at all the times. If you have spilled chemical in your eyes, flush with water in an eye wash station for 10 to 15 minutes. Use safety shower in case of chemical spillage on body. Notify the incident to Supervisor and Safety In-Charge.
- Confine long hair whenever working in the laboratory.
- Wear Shoes while working in the lab. Feet must be adequately covered. Open toed shoes or sandals are not permitted in the laboratory.
- Keep benches free from clutter. Backpacks, coats and personal items must be put away.
- NO eating or drinking in the laboratory.
- NO tobacco products in the laboratory. NO Smoking in the Campus premises.
- Familiarize yourself with the lab (equipment, chemicals).
- Never mouth a pipette, use a rubber bulb.
- Never leave an experiment unattended, particularly those require heat or running water.
- Report all spills especially mercury spill to Supervisor and Safety In-Charge.
- Do not use broken or chipped glassware and dispose them in the glass disposal box.
- Segregate the waste solvents appropriately for the proper disposal.
- Used syringe needles should be dropped in syringe disposal box, and do not dump waste paper in the broken glass/needle disposal boxes.
- Use glycerin when inserting glass tubing or thermometers into rubber stoppers.
- Do not perform unauthorized experiments in the lab.
- Do not use torn out electric wired equipment.
- Follow the special instructions to use X-ray, Lasers, and radioactive materials, electrical hazard etc. (Contact Supervisor/Expert's Advice needed)
- Follow special instructions and, be careful while handling and disposing Biohazardous samples (Contact, Safety In-Charge, Biology Division)
- If you are allergic to any chemicals/Solvents please give the details to supervisor.