PARTIAL WAVES, PHASE SHIFTS, REACTION CROSS-SECTIONS

The general cross-section σ is written in terms of the scattering amplitudes f as $d\sigma/d\Omega = |f(\theta)|^2$, where $f(\theta)$ is a sum over partial waves corresponding to different l values.

Using the orthonormality of the Legendre Polynomials appearing in the series expansion of f, we can write

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \int |f(\theta)|^2 d\Omega = \sum_l \frac{\pi}{K^2} (2l+1) \left| 1 - S_l \right|^2$$

The summand for each l is called the lth partial cross-section, $\sigma_l = \frac{\pi}{K^2} (2l+1) \left| 1 - S_l \right|^2$. Hence $\sigma = \sum_l \sigma_l$ and this can be interpreted semi-classically. Each partial wave corresponds to a definite angular momentum, which can be interpreted to correspond to a definite classical impact parameter through the relationships

$$L = m_0 v_0 b = \sqrt{2(l+1)} \frac{h}{K}$$

Thus each l corresponds to a "ring" of radius $\pi \sqrt{2(l+1)} / K$ and radius thickness $1 / h$. The geometric area of this ring is

$$A = (2l+1) \pi / K^2 \rightarrow \pi (l+1)^2 - \pi l^2 \frac{2}{3}$$

Since l is quantised, we take the ring to have inner l outer radii as l and $l+1$.

If we interpret the area of this ring as the cross-section for scattering, then there must be a one-to-one correspondence between this area and the "maximal efficient, or 100% scattering" value of σ_l defined earlier. The maximum value of σ_l occurs when $S_l = -1$ that is $e^{2iS_l} = -1 \Rightarrow S_l = \pi / 2$. In contrast, when $S_l = +1$ or $S_l = 0, \pi$, the cross-section is zero. The value of K has not changed in either of these cases.
When $|S_k| < 1$ we call the scattering as inelastic, since under this condition the amplitude of the outgoing wave is less than unity. (The ingoing wave has amplitude = 1 by definition)

The inelastic, or reaction cross-section, is defined for each partial wave as that part which is missing from the elastic cross-section:

$$\sigma_{\text{react}, \ell} = \frac{\pi}{K^2} (2\ell + 1) (1 - |S_k|^2)$$

Based on this partial wave cross-section, we define the full reaction cross-section as

$$\sigma_{\text{react}} = \sum_{\ell} \sigma_{\text{react}, \ell} = \sum_{\ell} \frac{\pi}{K^2} (2\ell + 1) (1 - |S_k|^2)$$
The differential cross-section for inelastic scattering of an electron from an atom can be written as
\[
\frac{d\sigma}{d\Omega} = \frac{m^2 p'}{4\pi^2 \hbar^4} |\langle n \bar{p}' | U | 0 \bar{p} \rangle|^2
\]
where \(n, \bar{p}' \) are labels for the final state of the atom & electron respectively and \(0, \bar{p} \) are the initial state labels. Energy conservation implies \((p^2 - p'^2)/2m = E_n - E_0 \). We now evaluate the matrix element
\[
\langle n \bar{p}' | U | 0 \bar{p} \rangle = \frac{1}{p} \int d\tau_1 d\tau_2 \ldots \int d\tau_2 \psi^*_n \psi_0 e^{i(\mathbf{K} \cdot \mathbf{r})} U(\mathbf{r})
\]
and
\[
U(\mathbf{r}) = \frac{Ze^2}{r} \sum_j \frac{e^2}{|\mathbf{r} - \mathbf{r}_j|} \quad \bar{r}_j : \text{electron in atom} \quad \mathbf{F} : \text{incident electron}
\]
The first integral term containing \(Ze^2/r \) is zero because it involves a product:
\[
\int \psi^*_n \psi_0 d\tau_1 d\tau_2 \ldots d\tau_2 \int (Ze^2/r) e^{i\mathbf{q} \cdot \mathbf{r}} d\tau
\]
in which the first integral is zero due to orthonormality of the \(\psi \)'s. The second integral is non-zero, and can be calculated by the Fourier decomposition technique seen before:
\[
\phi_q(\mathbf{r}_j) = \int \frac{e^{-i\mathbf{q} \cdot \mathbf{r}}}{|\mathbf{r} - \mathbf{r}_j|} d\tau \quad \text{is the potential due to the charge density } \rho = \delta(\mathbf{r} - \mathbf{r}_j)
\]
so
\[
\phi_q(\mathbf{r}_j) = \frac{4\pi}{q^2} e^{-i\mathbf{q} \cdot \mathbf{r}_j}
\]
Hence the matrix element
\[
\langle n \bar{p}' | U | 0 \bar{p} \rangle = \frac{4\pi}{q^2} \langle n | \sum_j e^{-i\mathbf{q} \cdot \mathbf{r}_j} | 0 \rangle
\]
\[
\therefore \frac{d\sigma}{d\Omega} = \frac{m^2 e^2}{2\pi^2 \hbar^4} \frac{4}{p} \langle n | \sum_j e^{-i\mathbf{q} \cdot \mathbf{r}_j} | 0 \rangle
\]
It is instructive to write the differential cross-section not in terms of the solid angle, but in terms of the momentum transfer \(q \), since it is this quantity that can be directly related to the energy \(\Delta E \) gained by the target. To do this we note that
\[
q^2 = K^2 + k'^2 - 2KK'\cos \chi \quad \Rightarrow \quad q \, dq = KK' \sin \chi \, d\chi
\]
\[
q \, dq = KK' \, d\Omega / 2\pi
\]
\[\frac{d\sigma}{dq} = 8\pi \left(\frac{e^2}{\hbar v} \right)^2 \frac{1}{q^2} \left| \langle n | \sum_{j=1}^{\infty} e^{-iq \cdot r_j} | 0 \rangle \right|^2 \]

If \(q \) is small, i.e., \((K-K') < K\), then \(\chi \) is small also, so we have two approximate relationships in this case:

\[E_n - E_0 = \hbar^2 (K^2-K'^2)/2m = \hbar^2 K (K-K') \]

\[q^2 \approx (K-K')^2 + (K\chi)^2 \Rightarrow q = \left[\frac{1}{2} (E_n - E_0) / \hbar v \right]^{1/2} + K\chi \]

If \(\chi < 1 \), then \(q = K\chi = (mv/h) \theta \chi \)

If we consider energy transfer, \(E_n - E_0 = \Delta E \) to be small compared with the kinetic energy of the incident particle, then the first term can be neglected w.r.t. the second one in \([..]^\frac{1}{2} \) (the same assumption gives us \(\chi \approx v_0/v \)).

For small \(q \), the exponent appearing in the matrix element can be expanded as a power series taking the \(\vec{Z} \) axis in the atomic coordinates to be along \(\vec{q} \):

\[e^{-i\vec{q} \cdot \vec{r}_j} = 1 - iq \cdot \vec{r}_j - q^2 r_j^2 \]

The first term integrates to zero due to orthornormality of \(\vec{v}_n \) & \(\vec{v}_0 \)

The second term gives

\[\frac{d\sigma}{dq} = 8\pi \left(\frac{e^2}{\hbar v} \right)^2 \frac{1}{q^2} \left| \langle n | \sum_{j=1}^{\infty} Z_j e^{-iq \cdot r_j} | 0 \rangle \right|^2 \]

\[\Rightarrow \frac{d\sigma}{dq} = 4 \left(\frac{e^2}{\hbar v} \right)^2 \frac{1}{q^2} \left| \langle n | \sum_{j=1}^{\infty} Z_j e^{-iq \cdot r_j} | 0 \rangle \right|^2 \frac{\chi^2}{\chi^2} \]

\[\sum_{j=1}^{\infty} Z_j \] is the dipole moment

The third term gives a contribution to the cross-section

\[\frac{d\sigma}{dq} = 2\pi \left(\frac{e^2}{\hbar v} \right)^2 \langle n | \sum_{j=1}^{\infty} Z_j^2 e^{-iq \cdot r_j} | 0 \rangle \]

(The quadrupole term)