Maryam Mirzakhani memorial talk
IISER Pune, Maths Club

November 17, 2017
Short Bio

Mirzakhani was born on 3rd May 1977, in Tehran, Iran.
Mirzakhani was born on 3rd May 1977, in Tehran, Iran.

In the 1995 International Mathematical Olympiad, she became the first Iranian student to achieve a perfect score and to win two gold medals.
Short Bio

Mirzakhani was born on 3rd May 1977, in Tehran, Iran.

In the 1995 International Mathematical Olympiad, she became the first Iranian student to achieve a perfect score and to win two gold medals.

She obtained her BSc in mathematics in 1999 from the Sharif University of Technology, Tehran.
Mirzakhani was born on 3rd May 1977, in Tehran, Iran.

In the 1995 International Mathematical Olympiad, she became the first Iranian student to achieve a perfect score and to win two gold medals.

She obtained her BSc in mathematics in 1999 from the Sharif University of Technology, Tehran.

She did her graduate studies at Harvard University, under the supervision of Fields medallist Curtis T. McMullen and obtained her PhD in 2004.
Short Bio

Short Bio

Mirzakhani was awarded the Fields Medal in 2014 for ”her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces”.

She died of breast cancer on 14 July 2017 at the age of 40.
Short Bio

Mirzakhani was awarded the Fields Medal in 2014 for ”her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces”.

She died of breast cancer on 14 July 2017 at the age of 40.
Geodesics on hyperbolic surfaces

In her PhD thesis, Mirzakhani studies the growth of the number $s_X(L)$ of simple closed geodesics of length at most L on a closed hyperbolic surface X. Using this she gave a striking new proof of the Witten conjecture. The first proof of this conjecture was given by Maxim Kontsevich. This conjecture has deep consequences in quantum gravity, a field of theoretical physics, that seeks to describe gravity according to the principles of quantum mechanics.
In her PhD thesis, Mirzakhani studies the growth of the number $s_X(L)$ of simple closed geodesics of length at most L on a closed hyperbolic surface X.

Using this she gave a striking new proof of the Witten conjecture. The first proof of this conjecture was given by Maxim Kontsevich.
In her PhD thesis, Mirzakhani studies the growth of the number $s_X(L)$ of simple closed geodesics of length at most L on a closed hyperbolic surface X.

Using this she gave a striking new proof of the Witten conjecture. The first proof of this conjecture was given by Maxim Konsevic.

This conjecture has deep consequences in quantum gravity, a field of theoretical physics, that seeks to describe gravity according to the principles of quantum mechanics.
Hyperbolic plane

The unit disk in the plane has a natural geometry called the Hyperbolic geometry or the Lobachevski geometry.
Hyperbolic plane

The unit disk in the plane has a natural geometry called the Hyperbolic geometry or the Lobachevski geometry.

Points: Points of unit disk

\[D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\} \]
Hyperbolic plane

The unit disk in the plane has a natural geometry called the Hyperbolic geometry or the Lobachevski geometry.

Points: Points of unit disk

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

Lines: Circles in D perpendicular to the boundary circle, also called geodesics.
Hyperbolic plane

The unit disk in the plane has a natural geometry called the Hyperbolic geometry or the Lobachevski geometry.

Points: Points of unit disk
\[D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\} \]

Lines: Circles in D perpendicular to the boundary circle, also called geodesics.

Angles: Same as Euclidean angles.
Hyperbolic plane
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.

However, it does not satisfy the 5th postulate, or the parallel postulate:

5. Given any straight line and a point not on it, there exists one and only one straight line which passes through that point and never intersects the first line.
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.

However it does not satisfy the 5th postulate, or the parallel postulate:
Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.

However it does not satisfy the 5th postulate, or the parallel postulate:

5. Given any straight line and a point not on it, there ”exists one and only one straight line which passes” through that point and never intersects the first line.
Infinite Parallels
Infinite Parallels
Hyperbolic distance

Recall in Euclidean plane if \(\gamma : [0, 1] \to \mathbb{R}^2 \) is a curve, and \(\gamma(t) = (x(t), y(t)) \) then its length is

\[
\ell(\gamma) = \int_0^1 |\gamma'(t)|\,dt = \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2}\,dt.
\]
Hyperbolic distance

Recall in Euclidean plane if $\gamma : [0, 1] \to \mathbb{R}^2$ is a curve, and $\gamma(t) = (x(t), y(t))$ then its length is

$$\ell(\gamma) = \int_0^1 |\gamma'(t)| dt = \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

In the hyperbolic plane we measure lengths of curves differently. If $\gamma : [0, 1] \to D, \gamma(t) = (x(t), y(t))$ then length of γ is

$$\ell(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt = \int_0^1 \frac{2\sqrt{(x'(t))^2 + (y'(t))^2}}{1 - x^2(t) - y^2(t)} dt.$$
It turns out with this length measure also called \textit{hyperbolic metric}, the shortest curve between any two points is the unique circle passing through those points and meeting the boundary at right angles.
Geodesics

It turns out with this length measure also called hyperbolic metric, the shortest curve between any two points is the unique circle passing through those points and meeting the boundary at right angles.

These curves of minimal length are called geodesics.
It turns out with this length measure also called hyperbolic metric, the shortest curve between any two points is the unique circle passing through those points and meeting the boundary at right angles.

These curves of minimal length are called geodesics.

The distance between any two points in the Hyperbolic plane is the length of the shortest curve joining the two points. Hence the length of the unique geodesic between those points.
Geodesics
Distance

Geodesic between the origin $O = (0, 0)$ and the point $A = (a, 0)$ in D is the straight line OA, parametrized by

$$
\gamma : [0, 1] \rightarrow D, \quad \gamma(t) = (0, at).
$$
Distance

Geodesic between the origin \(O = (0, 0) \) and the point \(A = (a, 0) \) in \(D \) is the straight line \(OA \), parametrized by

\[\gamma : [0, 1] \rightarrow D, \quad \gamma(t) = (0, at). \]

Hence we can calculate the distance \(d(O, A) \) by

\[
d(O, A) = \ell(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt.
\]
Distance

Geodesic between the origin $O = (0, 0)$ and the point $A = (a, 0)$ in D is the straight line OA, parametrized by

$$\gamma : [0, 1] \rightarrow D, \quad \gamma(t) = (0, at).$$

Hence we can calculate the distance $d(O, A)$ by

$$d(O, A) = \ell(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt = \int_0^1 \frac{2|a|}{1 - a^2t^2} dt = \ln \frac{1 + |a|}{1 - |a|}.$$
Distance

Geodesic between the origin \(O = (0, 0) \) and the point \(A = (a, 0) \) in \(D \) is the straight line \(OA \), parametrized by

\[
\gamma : [0, 1] \rightarrow D, \quad \gamma(t) = (0, at).
\]

Hence we can calculate the distance \(d(O, A) \) by

\[
d(O, A) = \ell(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt
\]

\[
= \int_0^1 \frac{2|a|}{1 - a^2 t^2} dt = \ln \frac{1 + |a|}{1 - |a|}.
\]

Note that \(d(O, A) \rightarrow \infty \) as \(a \rightarrow 1 \).
Distance

Geodesic between the origin $O = (0, 0)$ and the point $A = (a, 0)$ in D is the straight line OA, parametrized by

$$\gamma : [0, 1] \rightarrow D, \quad \gamma(t) = (0, at).$$

Hence we can calculate the distance $d(O, A)$ by

$$d(O, A) = \ell(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt$$

$$= \int_0^1 \frac{2|a|}{1 - a^2 t^2} dt = \ln \frac{1 + |a|}{1 - |a|}.$$

Note that $d(O, A) \rightarrow \infty$ as $a \rightarrow 1$.

All distances can be calculated using this, since there are isometries of D that take any two points to the origin and a point on the x-axis.
Hyperbolic geometry

This is the starting point of hyperbolic geometry. Some jargon:
Hyperbolic geometry

This is the starting point of hyperbolic geometry. Some jargon:

▶ D is a **metric space**, since we know how to measure distances.
Hyperbolic geometry

This is the starting point of hyperbolic geometry. Some jargon:

- D is a **metric space**, since we know how to measure distances.

- Distances go off to infinity as we approach the boundary so this is a **complete** metric space.
This is the starting point of hyperbolic geometry. Some jargon:

- D is a **metric space**, since we know how to measure distances.

- Distances go off to infinity as we approach the boundary so this is a **complete** metric space.

- D is a **Riemannian manifold** of dimension 2, since it is an (open) subset of \mathbb{R}^2 and we can measure lengths of curves.
This is the starting point of hyperbolic geometry. Some jargon:

- D is a **metric space**, since we know how to measure distances.

- Distances go off to infinity as we approach the boundary so this is a **complete** metric space.

- D is a **Riemannian manifold** of dimension 2, since it is an (open) subset of \mathbb{R}^2 and we can measure lengths of curves.

- The geometry of D is a type of **non-euclidean geometry** since it does not satisfy the parallel postulate of Euclid.
Closed Hyperbolic surfaces

These are surfaces that can be built from geodesic polygons in the hyperbolic plane by identifying sides. For example:
Closed Hyperbolic surfaces

These are surfaces that can be built from geodesic polygons in the hyperbolic plane by identifying sides. For example:
Closed Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they naturally have a metric: length of a curve is the length of the corresponding curve in the polygon.
Closed Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they naturally have a metric: length of a curve is the length of the corresponding curve in the polygon.

Geodesics are the same as the geodesics in the polygon.
Closed Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they naturally have a metric: length of a curve is the length of the corresponding curve in the polygon.

Geodesics are the same as the geodesics in the polygon.

Closed means topologically they are compact. As a Riemannian manifold they have constant curvature -1. This makes the surface somewhat rigid.
Closed Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they naturally have a metric: length of a curve is the length of the corresponding curve in the polygon.

Geodesics are the same as the geodesics in the polygon.

Closed means topologically they are compact. As a Riemannian manifold they have constant curvature -1. This makes the surface somewhat rigid.

These manifolds arise naturally in nature and also in physics. For instance there is something called the world sheet in String theory. It is the 2 dimensional manifold traced out by a string moving in space and can be realised as a hyperbolic surface in certain cases.
The genus of a closed surface is just the number of holes it has. A surface is hyperbolic if it has genus at least 2.

Genus 2

Genus 3
There is a nice enough topological space \mathcal{M}_g parametrizing all possible hyperbolic surfaces of genus g. This space is almost a manifold, but not quite.
There is a nice enough topological space \mathcal{M}_g parametrizing all possible hyperbolic surfaces of genus g. This space is almost a manifold, but not quite.

Points of \mathcal{M}_g correspond to different hyperbolic surfaces. For two different points the corresponding surfaces are not isomorphic.
Moduli Space

There is a nice enough topological space \mathcal{M}_g parametrizing all possible hyperbolic surfaces of genus g. This space is almost a manifold, but not quite.

Points of \mathcal{M}_g correspond to different hyperbolic surfaces. For two different points the corresponding surfaces are not isomorphic.

\mathcal{M}_g is called the moduli space of genus g hyperbolic surfaces and this is a major topic of study in mathematics, investigated by numerous mathematicians like Riemann, Mumford, Deligne, Kontsevic, Okounkov to name a few.
Simple closed geodesic

Let X be a closed hyperbolic surface. A path $\gamma : [0, 1] \to X$ is a simple closed geodesic if:

1. $\gamma([0, 1])$ is a geodesic,
2. $\gamma(0) = \gamma(1),$
3. $\gamma(s) \neq \gamma(t)$ if $0 \leq s < t < 1.$

In words, γ has the same starting and ending points, which is also a geodesic and which does not cross itself.
Let X be a closed hyperbolic surface. A path $\gamma : [0, 1] \rightarrow X$ is a simple closed geodesic if:

- $\gamma([0, 1])$ is a geodesic,
Let X be a closed hyperbolic surface. A path $\gamma : [0, 1] \to X$ is a **simple closed geodesic** if:

1. $\gamma([0, 1])$ is a geodesic,
2. $\gamma(0) = \gamma(1)$,
Let X be a closed hyperbolic surface. A path $\gamma : [0, 1] \to X$ is a simple closed geodesic if:

- $\gamma([0, 1])$ is a geodesic,
- $\gamma(0) = \gamma(1),$
- $\gamma(s) \neq \gamma(t)$ if $0 \leq s < t < 1.$
Let X be a closed hyperbolic surface. A path $\gamma : [0, 1] \rightarrow X$ is a simple closed geodesic if:

- $\gamma([0, 1])$ is a geodesic,
- $\gamma(0) = \gamma(1)$,
- $\gamma(s) \neq \gamma(t)$ if $0 \leq s < t < 1$.

In words γ has the same starting and ending points, which is also a geodesic and which does not cross itself.
Curves

Red curve is not closed, blue curve is closed but not simple, green curve is simple and closed.
Mirzakhani’s result

Let us now fix a closed hyperbolic surface of genus g, $X \in \mathcal{M}_g$.

Let $s_X(L)$ be the number of simple closed geodesics in X whose length is at most L. Then Mirzakhani proves that asymptotically $s_X(L) \sim \eta(X)L^{6g-6}$ where $\eta(X)$ is a constant depending on the surface X. Moreover $\eta : \mathcal{M}_g \to \mathbb{R}^+$ is a continuous function.
Let us now fix a closed hyperbolic surface of genus \(g \), \(X \in \mathcal{M}_g \).

Let \(s_X(L) \) be the number of simple closed geodesics in \(X \) whose length is at most \(L \). Then Mirzakhani proves that asymptotically

\[
s_X(L) \sim \eta(X)L^{6g-6}
\]

where \(\eta(X) \) is a constant depending on the surface \(X \).
Mirzakhani’s result

Let us now fix a closed hyperbolic surface of genus g, $X \in \mathcal{M}_g$.

Let $s_X(L)$ be the number of simple closed geodesics in X whose length is at most L. Then Mirzakhani proves that asymptotically

$$s_X(L) \sim \eta(X)L^{6g-6}$$

where $\eta(X)$ is a constant depending on the surface X.

Moreover $\eta : \mathcal{M}_g \to \mathbb{R}_+$ is a continuous function.