Arithmetic aspects of locally symmetric spaces.

Supriya Pisolkar (IISER - Pune)

IWM-University of Hyderabad-2016
Central theme of this talk

Let M be a compact connected Riemannian manifold. In differential geometry, one associates to M the following data:

- $\varepsilon(M) :=$ the spectrum of M, i.e. the set of nonzero eigenvalues counted with multiplicities of the Laplace-Beltrami operator Δ_M acting on the space of smooth functions on M.
- $L(M) :=$ the (weak) length spectrum of M, i.e. the set of lengths of closed geodesics (without multiplicities).

Question (Inverse spectral problem) To what extend these spectra determine the manifold? Most of the results in this direction are negative!
Central theme of this talk

Let M be a compact connected Riemannian manifold. In differential geometry, one associates to M the following data:

- $\mathcal{E}(M) :=$ the spectrum of M i.e. the set of nonzero eigenvalues counted with multiplicities of the Laplace-Beltrami operator Δ_M acting on the space of smooth functions on M.

- $L(M) :=$ the (weak) length spectrum of M i.e. the set of lengths of closed geodesics (without multiplicities).

Question (Inverse spectral problem)

To what extend these spectra determine the manifold?

Most of the results in this direction are negative!
Central theme of this talk

Let \mathcal{M} be a compact connected Riemannian manifold. In differential geometry, one associates to \mathcal{M} the following data:

- $\mathcal{E}(\mathcal{M}) :=$ the spectrum of \mathcal{M} i.e. the set of nonzero eigenvalues counted with multiplicities of the Laplace-Beltrami operator $\Delta_\mathcal{M}$ acting on the space of smooth functions on \mathcal{M}.

- $L(\mathcal{M}) :=$ the (weak) length spectrum of \mathcal{M} i.e. the set of lengths of closed geodesics (without multiplicities).

Question (Inverse spectral problem)

To what extend these spectra determine the manifold?

Most of the results in this direction are negative!
Central theme of this talk

Let M be a compact connected Riemannian manifold. In differential geometry, one associates to M the following data:

- $\varepsilon(M) :=$ the spectrum of M i.e. the set of nonzero eigenvalues counted with multiplicities of the Laplace-Beltrami operator Δ_M acting on the space of smooth functions on M.
- $L(M) :=$ the (weak) length spectrum of M i.e. the set of lengths of closed geodesics (without multiplicities).

Question (Inverse spectral problem)

To what extend these spectra determine the manifold?
Central theme of this talk

Let \mathcal{M} be a compact connected Riemannian manifold. In differential geometry, one associates to \mathcal{M} the following data:

- $\mathcal{E}(\mathcal{M}) :=$ the spectrum of \mathcal{M} i.e. the set of nonzero eigenvalues counted with multiplicities of the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$ acting on the space of smooth functions on \mathcal{M}.
- $\mathcal{L}(\mathcal{M}) :=$ the (weak) length spectrum of \mathcal{M} i.e. the set of lengths of closed geodesics (without multiplicities).

Question (Inverse spectral problem)

To what extent these spectra determine the manifold?

Most of the results in this direction are negative!
Isospectral Riemannian manifolds

Two compact, connected Riemannian manifolds M_1 and M_2 are said to be isospectral if $\varepsilon(M_1) = \varepsilon(M_2)$.

Example
Any two isometric Riemannian manifolds are isospectral.

Similarly, M_1 and M_2 are called iso-length spectral if $L(M_1) = L(M_2)$.

Theorem (Gangoli (for rank 1), Duistermaat-Kolk-Varadarajan (for general case))
Any two compact isospectral locally symmetric spaces are iso-length spectral.
Isospectral Riemannian manifolds

Two compact, connected Riemannian manifolds M_1 and M_2 are said to be isospectral if $\varepsilon(M_1) = \varepsilon(M_2)$.

Example

Any two isometric Riemannian manifolds are isospectral.
Isospectral Riemannian manifolds

Two compact, connected Riemannian manifolds M_1 and M_2 are said to be isospectral if $\varepsilon(M_1) = \varepsilon(M_2)$.

Example

Any two isometric Riemannian manifolds are isospectral.

Similarly, M_1 and M_2 are called iso-length spectral if $L(M_1) = L(M_2)$.
Isospectral Riemannian manifolds

Two compact, connected Riemannian manifolds M_1 and M_2 are said to be isospectral if $\varepsilon(M_1) = \varepsilon(M_2)$.

Example

Any two isometric Riemannian manifolds are isospectral.

Similarly, M_1 and M_2 are called iso-length spectral if $L(M_1) = L(M_2)$.

Theorem (Gangoli (for rank 1), Duistermaat-Kolk-Varadarajan (for general case))

Any two compact isospectral locally symmetric spaces are iso-length spectral.
One of the important classical inverse spectral problem is:

Question

Are any two iso-spectral compact Riemannian manifolds isometric?
One of the important classical inverse spectral problem is:

Question

Are any two iso-spectral compact Riemannian manifolds isometric?

This was beautifully formulated by Mark Kac as “Can one hear the shape of a drum?”
One of the important classical inverse spectral problem is:

Question

Are any two iso-spectral compact Riemannian manifolds isometric?

This was beautifully formulated by Mark Kac as “Can one hear the shape of a drum?” In general, the answer to this question is in the negative as was shown by Milnor, Vignéras and Sunada.
One of the important classical inverse spectral problem is:

Question

Are any two iso-spectral compact Riemannian manifolds isometric?

This was beautifully formulated by Mark Kac as “Can one hear the shape of a drum?” In general, the answer to this question is in the negative as was shown by Milnor, Vignéras and Sunada. In the counter examples produced by Vignéras and Sunada the manifolds turned out to be commensurable i.e they have a common finite sheeted cover. This suggest the following weaker question.
One of the important classical inverse spectral problem is:

Question

Are any two iso-spectral compact Riemannian manifolds isometric?

This was beautifully formulated by Mark Kac as “Can one hear the shape of a drum?” In general, the answer to this question is in the negative as was shown by Milnor, Vignéras and Sunada. In the counter examples produced by Vignéras and Sunada the manifolds turned out to be commensurable i.e they have a common finite sheeted cover. This suggest the following weaker question.

Question (Weaker form of Kac’s question)

Are any two isospectral compact Riemannian manifolds necessarily commensurable?

This has been extensively studied in the context of locally symmetric spaces.
Locally symmetric spaces

Locally symmetric spaces are the spaces of the form $\Gamma \backslash G/K$ where G is a real semisimple Lie group, K is a maximal compact subgroup of G and Γ is a lattice in G. The universal cover G/K carries a natural G-invariant metric coming from the Killing form on the Lie algebra \mathfrak{g} of G.

Example

When $G = \text{SL}(2, \mathbb{R})$ and $K = \text{SO}(2, \mathbb{R})$ then, $G/K \cong \mathbb{H} = \{x + iy \mid x, y \in \mathbb{R}; y > 0 \}$. For $N > 3$, consider the $\Gamma(N)$ then, $\Gamma(N) \backslash \text{SL}(2, \mathbb{R})/\text{SO}(2, \mathbb{R})$ is a locally symmetric space.
Locally symmetric spaces

Locally symmetric spaces are the spaces of the form $\Gamma \backslash G/K$ where G is a real semisimple Lie group, K is a maximal compact subgroup of G and Γ is a lattice in G. The universal cover G/K carries a natural G-invariant metric coming from the Killing form on the Lie algebra \mathfrak{g} of G.

Example

When $G = SL(2, \mathbb{R})$ and $K = SO(2, \mathbb{R})$ then, $G/K \cong \mathbb{H} = \{ x + iy \mid x, y \in \mathbb{R}; y > 0 \}$

For $N > 3$, consider the $\Gamma(N)$ then, $\Gamma(N) \backslash SL_2(\mathbb{R})/SO_2(\mathbb{R})$ is a locally symmetric space.
Isospectrality \Rightarrow Commensurability?

Lubotzky-Samuels-Vishne '2006 by using the Langlands correspondence, have constructed non-commensurable but isospectral locally symmetric spaces associated with absolutely simple real groups of type A_n. Nevertheless, the answer to above question is in the affirmative for several classes of arithmetically defined locally symmetric spaces.

A. Reid '1992 - If M_1 and M_2 are two isospectral nonisometric arithmetic hyperbolic 2-manifolds then M_1 and M_2 are commensurable.

Chinburg-Hamilton-Long and Reid '2008 - Similar result for arithmetically defined hyperbolic 3-manifolds.

Gopal Prasad and Rapinchuk '2009 - Assuming the validity of Schanuel's conjecture on transcendental numbers, any two compact isospectral arithmetically defined locally symmetric spaces associated with the absolutely simple real algebraic groups of type other than A_n, D_{2n+1} ($n > 1$) or E_6 are necessarily commensurable.
Isospectrality \implies Commensurability?

Lubotzky-Samuels-Vishne ’2006 by using the Langlands correspondence, have constructed non-commensurable but isospectral locally symmetric spaces associated with absolutely simple real groups of type A_n. Nevertheless, the answer to above question is in the affirmative for several classes of arithmetically defined locally symmetric spaces.
Isospectrality \iff Commensurability?

Lubotzky-Samuels-Vishne ‘2006 by using the Langlands correspondence, have constructed non-commensurable but isospectral locally symmetric spaces associated with absolutely simple real groups of type A_n. Nevertheless, the answer to above question is in the affirmative for several classes of arithmetically defined locally symmetric spaces.

A. Reid ’1992 - If M_1 and M_2 are two isospectral nonisometric arithmetic hyperbolic 2-manifolds then M_1 and M_2 are commensurable.

Chinburg-Hamilton-Long and Reid ’2008 - Similar result for arithmetically defined hyperbolic 3-manifolds.
Isospectrality \iff Commensurability?

Lubotzky-Samuels-Vishne ’2006 by using the Langlands correspondence, have constructed non-commensurable but isospectral locally symmetric spaces associated with absolutely simple real groups of type A_n. Nevertheless, the answer to above question is in the affirmative for several classes of arithmetically defined locally symmetric spaces.

A. Reid ’1992 - If M_1 and M_2 are two isospectral nonisometric arithmetic hyperbolic 2-manifolds then M_1 and M_2 are commensurable.

Chinburg-Hamilton-Long and Reid ’2008 - Similar result for arithmetically defined hyperbolic 3-manifolds.

Gopal Prasad and Rapinchuk ’2009 - Assuming the validity of Schanuel’s conjecture on transcendental numbers, any two compact isospectral arithmetically defined locally symmetric spaces associated with the absolutely simple real algebraic groups of type other than $A_n(n > 1)$, $D_{2n+1}(n > 1)$ or E_6 are necessarily commensurable.
One of the important ingredients of their proof is the connection between Laplace spectrum $\epsilon(M)$ and length spectrum $L(M)$. They first observed that isospectral spaces under consideration are length-commensurable, which means $L(M_1) = Q L(M_2)$ (length commensurability is weaker than the notion of iso-length spectral). Isospectrality $\downarrow \downarrow$ Length commensurability $\downarrow \downarrow$ Commensurability To prove that length commensurability implies commensurability they have introduced a new notion of weak commensurability of Zariski dense subgroups in absolutely almost simple groups.
One of the important ingredients of their proof is the connection between Laplace spectrum $\epsilon(M)$ and length spectrum $L(M)$. They first observed that isospectral spaces under consideration are length-commensurable, which means the $\mathbb{Q}.L(M_1) = \mathbb{Q}.L(M_2)$ (length commensurability is weaker than the notion of iso-length spectral).
One of the important ingredients of their proof is the connection between Laplace spectrum $\epsilon(M)$ and length spectrum $L(M)$. They first observed that isospectral spaces under consideration are length-commensurable, which means the $\mathbb{Q}.L(M_1) = \mathbb{Q}.L(M_2)$ (length commensurability is weaker than the notion of iso-length spectral).

\[
\text{Isospectrality} \xrightarrow{\text{DKV}} \text{Length commensurability} \\
\downarrow ? \\
\text{Commensurability}
\]
One of the important ingredients of their proof is the connection between Laplace spectrum $\epsilon(M)$ and length spectrum $L(M)$. They first observed that isospectral spaces under consideration are length-commensurable, which means the $\mathbb{Q}.L(M_1) = \mathbb{Q}.L(M_2)$ (length commensurability is weaker than the notion of iso-length spectral).

\[
\begin{aligned}
\text{Isospectrality} & \xrightarrow{\text{DKV}} \text{Length commensurability} \\
& \Downarrow ? \\
& \text{Commensurability}
\end{aligned}
\]

To prove that length commensurability implies commensurability they have introduced a new notion of weak commensurability of Zariski dense subgroups in absolutely almost simple groups.
Weak commensurability

Definition

For $i = 1, 2$, G_i - semisimple group defined over a field $F (\text{char} = 0)$. $\Gamma_i \subset G_i(F)$ - Zariski dense subgroup.

Then Γ_1 and Γ_2 are said to be **weakly commensurable** if given any element of infinite order $\gamma_1 \in \Gamma_1$ there exists an element of infinite order $\gamma_2 \in \Gamma_2$ such that the subgroup of \overline{F}^{\times} generated by eigenvalues of γ_1 (resp. γ_2) (in a faithful representation of G_1) intersect nontrivially the subgroup generated by the eigenvalues of an element γ_2 (resp. γ_1).
Weak commensurability

Definition

For $i = 1, 2$, G_i - semisimple group defined over a field F (char $= 0$). $\Gamma_i \subset G_i(F)$ - Zariski dense subgroup.

Then Γ_1 and Γ_2 are said to be weakly commensurable if given any element of infinite order $\gamma_1 \in \Gamma_1$ there exists an element of infinite order $\gamma_2 \in \Gamma_2$ such that the subgroup of \overline{F}^\times generated by eigenvalues of γ_1 (resp. γ_2) (in a faithful representation of G_1) intersect nontrivially the subgroup generated by the eigenvalues of an element γ_2 (resp. γ_1).

G. Prasad, Rapinchuk When locally symmetric spaces are of rank greater than one, assuming the validity of Schanuel’s conjecture, length commensurability implies weak commensurability.
Weak commensurability

Definition

For $i = 1, 2$, G_i - semisimple group defined over a field $F (\text{char} = 0)$. Let $\Gamma_i \subset G_i(F)$ - Zariski dense subgroup. Then Γ_1 and Γ_2 are said to be weakly commensurable if given any element of infinite order $\gamma_1 \in \Gamma_1$ there exists an element of infinite order $\gamma_2 \in \Gamma_2$ such that the subgroup of \overline{F}^\times generated by eigenvalues of γ_1 (resp. γ_2) (in a faithful representation of G_1) intersect nontrivially the subgroup generated by the eigenvalues of an element γ_2 (resp. γ_1).

G. Prasad, Rapinchuk When locally symmetric spaces are of rank greater than one, assuming the validity of Schanuel’s conjecture, length commensurability implies weak commensurability.

Schanuel’s conjecture If z_1, z_2, \cdots, z_n are \mathbb{Q}-linearly independent complex numbers, then the transcendence degree over \mathbb{Q} of the field generated by

$$z_1, z_2, \cdots, z_n, e^{z_1}, \cdots, e^{z_n}$$

is at least n.

S. Pisolkar (IWM) Arithmetic aspects of locally symmetric space 8 / 22
Theorem (G. Prasad and Rapinchuk)

Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero containing weakly commensurable Zariski dense arithmetic subgroups. Assume the validity of Schanuel's conjecture. Then,

1. The groups G_1 and G_2 are either of the same geometric type or one of them is of type B_n and other is of type C_n for some $n \geq 3$.

2. If the groups are of the same type different from A_n, $D_{2n} + 1$ ($n > 1$) or E_6 then the lattices are commensurable.

3. In any weakly commensurable class of arithmetic lattices, there are only finitely many commensurability classes of arithmetic lattices.
Theorem (G. Prasad and Rapinchuk)

Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero containing weakly commensurable Zariski dense arithmetic subgroups. Assume the validity of Schanuel’s conjecture. Then,

1. The groups G_1 and G_2 are either of the same geometric type or one of them is of type B_n and other is of type C_n for some $n \geq 3$.

2. If the groups are of the same type different from A_n, D_{2n+1} ($n > 1$) or E_6 then the lattices are commensurable.
Theorem (G. Prasad and Rapinchuk)

Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero containing weakly commensurable Zariski dense arithmetic subgroups. Assume the validity of Schanuel’s conjecture. Then,

1. The groups G_1 and G_2 are either of the same geometric type or one of them is of type B_n and other is of type C_n for some $n \geq 3$.
2. If the groups are of the same type different from A_n, D_{2n+1} ($n > 1$) or E_6 then the lattices are commensurable.
3. In any weakly commensurable class of arithmetic lattices, there are only finitely many commensurability classes of arithmetic lattices.
Summary

Isospectrality

↓

Commensurability
Summary

Isospectrality $\xrightarrow{\text{DKV}}$ Length commensurability

Commensurability $\xleftarrow{\text{PR}}$ Weak commensurability

↓

 questioned

↓

Schanuel’s conj.
Can we avoid Schanuel’s conjecture?

Inspired by the results of Parsad and Rapinchuk we asked whether Schanuel’s conjecture can be avoided under the stronger hypothesis that the Zariski dense subgroups Γ_1 and Γ_2 defining the locally symmetric spaces are representation equivalent lattices?

Advantage of working with representation equivalence is that one can work with arithmetic setting when there is no Riemannian geometric structure on the given space.

We introduce a new relation characteristic equivalence on the class of arithmetic lattices, stronger than weak commensurability. This simplifies some of the arguments used by Prasad and Rapinchuk to deduce commensurability type of results.
Can we avoid Schanuel’s conjecture?

Inspired by the results of Parsad and Rapinchuk we asked whether Schanuel’s conjecture can be avoided under the stronger hypothesis that the Zariski dense subgroups \(\Gamma_1 \) and \(\Gamma_2 \) defining the locally symmetric spaces are representation equivalent lattices?
Can we avoid Schanuel’s conjecture?

Inspired by the results of Parsad and Rapinchuk we asked whether Schanuel’s conjecture can be avoided under the stronger hypothesis that the Zariski dense subgroups Γ_1 and Γ_2 defining the locally symmetric spaces are representation equivalent lattices?

Advantage of working with representation equivalence is that, one can work with arithmetic setting when there is no Riemannian geometric structure on the given space.
Can we avoid Schanuel’s conjecture?

Inspired by the results of Parsad and Rapinchuk we asked whether Schanuel’s conjecture can be avoided under the stronger hypothesis that the Zariski dense subgroups Γ_1 and Γ_2 defining the locally symmetric spaces are representation equivalent lattices?

Advantage of working with representation equivalence is that, one can work with arithmetic setting when there is no Riemannian geometric structure on the given space.

We introduce a new relation **characteristic equivalence** on the class of arithmetic lattices, stronger than weak commensurability.
Can we avoid Schanuel’s conjecture?

Inspired by the results of Parsad and Rapinchuk we asked whether Schanuel’s conjecture can be avoided under the stronger hypothesis that the Zariski dense subgroups Γ_1 and Γ_2 defining the locally symmetric spaces are representation equivalent lattices?

Advantage of working with representation equivalence is that, one can work with arithmetic setting when there is no Riemannian geometric structure on the given space.

We introduce a new relation characteristic equivalence on the class of arithmetic lattices, stronger than weak commensurability. This simplifies some of the arguments used by Prasad and Rapinchuk to deduce commensurability type of results.
Representation equivalence

Let Γ be a locally compact, unimodular topological group. Γ is a uniform lattice in G. Let R_{Γ} denote the right regular representation of G on the space $L^2(\Gamma \backslash G)$ given by:

$$(R_{\Gamma}(g)f)(x) = f(xg), \quad f \in L^2(\Gamma \backslash G), \quad g, x \in G.$$

As a G-space, $L^2(\Gamma \backslash G)$ breaks up as a direct sum of irreducible unitary representations of G, $L^2(\Gamma \backslash G) \cong \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma) \pi$.

Definition: Two uniform lattices Γ_1 and Γ_2 inside a locally compact group G are said to be representation equivalent if $L^2(\Gamma_1 \backslash G) \cong L^2(\Gamma_2 \backslash G)$ as G-spaces.

DeTurck-Gordon: Let G be a locally compact topological group which acts on a Riemannian manifold M. If $\Gamma_1, \Gamma_2 \subset G$ are two representation equivalent lattices which act properly discontinuously and freely on M, then $\Gamma_1 \backslash M$ and $\Gamma_2 \backslash M$ are isospectral for the Laplacian acting on the space of smooth functions.
Representation equivalence

\(G\) - a locally compact, unimodular topological group.
\(\Gamma\) - a uniform lattice in \(G\).

Let, \(R_{\Gamma}\) denote the right regular representation of \(G\) on the space \(L^2(\Gamma \backslash G)\) given by,

\[
(R_{\Gamma}(g) f)(x) = f(xg), \quad f \in L^2(\Gamma \backslash G), \quad g, x \in G.
\]

As a \(G\)-space, \(L^2(\Gamma \backslash G)\) breaks up as a direct sum of irreducible unitary representations of \(G\),

\[L^2(\Gamma \backslash G) \cong \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma) \pi.\]

Definition

Two uniform lattices \(\Gamma_1\) and \(\Gamma_2\) inside a locally compact group \(G\) are said to be representation equivalent if \(L^2(\Gamma_1 \backslash G) \cong L^2(\Gamma_2 \backslash G)\) as \(G\)-spaces.

DeTurck-Gordon - Let \(G\) be a locally compact topological group which acts on a Riemannian manifold \(M\). If \(\Gamma_1, \Gamma_2 \subset G\) are two representation equivalent lattices which act properly discontinuously and freely on \(M\), then \(\Gamma_1 \backslash M\) and \(\Gamma_2 \backslash M\) are isospectral for the Laplacian acting on the space of smooth functions.
Representation equivalence

G - a locally compact, unimodular topological group.

Γ - a uniform lattice in G.

Let, R_{Γ} denote the right regular representation of G on the space $L^2(\Gamma \backslash G)$ given by,

$$(R_{\Gamma}(g)f)(x) = f(xg), \quad f \in L^2(\Gamma \backslash G), \quad g, x \in G.$$
Representation equivalence

\(G \) - a locally compact, unimodular topological group.
\(\Gamma \) - a uniform lattice in \(G \).

Let, \(R_\Gamma \) denote the right regular representation of \(G \) on the space \(L^2(\Gamma \backslash G) \) given by,

\[
(R_\Gamma(g)f)(x) = f(xg), \quad f \in L^2(\Gamma \backslash G), \quad g, x \in G.
\]

As a \(G \)-space, \(L^2(\Gamma \backslash G) \) breaks up as a direct sum of irreducible unitary representations of \(G \),

\[
L^2(\Gamma \backslash G) \simeq \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma) \pi.
\]
Representation equivalence

G - a locally compact, unimodular topological group.

Γ - a uniform lattice in G.

Let, R_Γ denote the right regular representation of G on the space $L^2(\Gamma \backslash G)$ given by,

$$(R_\Gamma(g)f)(x) = f(xg), \quad f \in L^2(\Gamma \backslash G), \quad g, x \in G.$$

As a G-space, $L^2(\Gamma \backslash G)$ breaks up as a direct sum of irreducible unitary representations of G, $L^2(\Gamma \backslash G) \cong \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma) \pi$.

Definition

Two uniform lattices Γ_1 and Γ_2 inside a locally compact group G are said to be representation equivalent if $L^2(\Gamma_1 \backslash G) \cong L^2(\Gamma_2 \backslash G)$ as G-spaces.
Representation equivalence

G - a locally compact, unimodular topological group.
Γ - a uniform lattice in G.

Let, R_Γ denote the right regular representation of G on the space $L^2(\Gamma\backslash G)$ given by,

$$(R_\Gamma(g)f)(x) = f(xg), \quad f \in L^2(\Gamma\backslash G), \quad g, x \in G.$$

As a G-space, $L^2(\Gamma\backslash G)$ breaks up as a direct sum of irreducible unitary representations of G, \(L^2(\Gamma\backslash G) \simeq \bigoplus_{\pi \in \hat{G}} m(\pi, \Gamma) \pi. \)

Definition

Two uniform lattices Γ_1 and Γ_2 inside a locally compact group G are said to be representation equivalent if $L^2(\Gamma_1\backslash G) \cong L^2(\Gamma_2\backslash G)$ as G-spaces.

DeTurck-Gordon - Let G be a locally compact topological group which acts on a Riemannian manifold M. If $\Gamma_1, \Gamma_2 \subset G$ are two representation equivalent lattices which act properly discontinuously and freely on M, then $\Gamma_1\backslash M$ and $\Gamma_2\backslash M$ are isospectral for the Laplacian acting on the space of smooth functions.
Representation equivalence \(\iff \) commensurability

By using the Selberg trace formula for compact quotients we have observed that representation equivalent lattices are element wise conjugates, which then implies that they are weakly commensurable.
Representation equivalence \iff commensurability

By using the Selberg trace formula for compact quotients we have observed that representation equivalent lattices are element wise conjugates, which then implies that they are weakly commensurable.

\[
\text{Isospectrality} \longrightarrow \text{Length commensurability} \\
\downarrow \phantom{\text{Schanuel's conj.}} \phantom{\text{Commensurability}} \phantom{\leftarrow \text{Weak commensurability}} \\
\downarrow \\
\text{Commensurability} \leftarrow \text{Weak commensurability}
\]
Representation equivalence \implies commensurability

By using the Selberg trace formula for compact quotients we have observed that representation equivalent lattices are element wise conjugates, which then implies that they are weakly commensurable.

$RE \implies$ Isospectrality \implies Length commensurability

Commensurability \iff Weak commensurability

Schanuel’s conj.
Representation equivalence \implies commensurability

By using the Selberg trace formula for compact quotients we have observed that representation equivalent lattices are element wise conjugates, which then implies that they are weakly commensurable.

\[
RE \rightarrow Isospectrality \rightarrow Length \ commensurability
\]

\[
EWC \rightarrow Commensurability \leftarrow Weak \ commensurability
\]

Schanuel’s conj.
Characteristic polynomial of $Ad_G(\gamma)$.

Let G - an algebraic group defined over a number field K.

Characteristic polynomial of $Ad_G(\gamma)$.

Let G - an algebraic group defined over a number field K.
$\gamma \in G(K)$ - a semisimple element,
Characteristic polynomial of $Ad_G(\gamma)$.

Let G - an algebraic group defined over a number field K.

$\gamma \in G(K)$ - a semisimple element,

Let $P(Ad_G(\gamma), x)$ denote the characteristic polynomial of $Ad(\gamma)$.

S. Pisolkar (IWM)

Arithmetic aspects of locally symmetric space
Characteristic polynomial of $Ad_G(\gamma)$.

Let G - an algebraic group defined over a number field K.
$\gamma \in G(K)$ - a semisimple element,
Let $P(Ad_G(\gamma), x)$ denote the characteristic polynomial of $Ad(\gamma)$.

Definition

For $i = 1, 2$, G_i - algebraic groups defined over a number field K.
$\Gamma_i \subset G_i(K)$ - arithmetic subgroups. Then Γ_1 and Γ_2 are called Characteristically equivalent if given any element $\gamma \in \Gamma_1$ there exists an element $\gamma_2 \in \Gamma_2$ such that $P(Ad_{G_1}(\gamma_1), X) = P(Ad_{G_2}(\gamma_2), X)$.
Characteristic polynomial of $\text{Ad}_G(\gamma)$.

Let G - an algebraic group defined over a number field K.
$\gamma \in G(K)$ - a semisimple element,
Let $P(\text{Ad}_G(\gamma), x)$ denote the characteristic polynomial of $\text{Ad}(\gamma)$.

Definition

For $i = 1, 2$, G_i - algebraic groups defined over a number field K.
$\Gamma_i \subset G_i(K)$ - arithmetic subgroups. Then Γ_1 and Γ_2 are called
Characteristically equivalent if given any element $\gamma \in \Gamma_1$ there exists an
element $\gamma_2 \in \Gamma_2$ such that $P(\text{Ad}_{G_1}(\gamma_1), X) = P(\text{Ad}_{G_2}(\gamma_2), X)$.

By using trace formula for compact quotients we have proved that

Proposition

If $\Gamma_1 \subset G_1(K)$ and $\Gamma_2 \in G_2(K)$ are representation equivalent lattices then
they are characteristically equivalent.
Theorem (-, Rajan, Bhagwat '2015)

For \(i = 1, 2 \) let,
\[G_i - \text{connected, absolutely almost simple anisotropic algebraic groups defined over a number field } K, \]
\[\Gamma_i \subset G_i(K) - \text{Characteristically equivalent arithmetic subgroups}. \]
Then,

1. The groups \(G_1 \) and \(G_2 \) are either of the same geometric type or one of them is of type \(B_n \) and other is of type \(C_n \) for some \(n \geq 3 \).
2. If the groups are of the same type different from \(A_n, D_{2n}^{+1} (n > 1) \) or \(E_6 \) then the lattices are commensurable.
3. In any Characteristic equivalent class of arithmetic lattices, there are only finitely many commensurability classes of arithmetic lattices.
Theorem (-, Rajan, Bhagwat '2015)

For $i = 1, 2$ let,

G_i - connected, absolutely almost simple anisotropic algebraic groups defined over a number field K,

$\Gamma_i \subset G_i(K)$ - Characteristically equivalent arithmetic subgroups. Then,

1. The groups G_1 and G_2 are either of the same geometric type or one of them is of type B_n and other is of type C_n for some $n \geq 3$.

2. If the groups are of the same type different from A_n, D_{2n}^+ ($n > 1$) or E_6 then the lattices are commensurable.

3. In any Characteristic equivalent class of arithmetic lattices, there are only finitely many commensurability classes of arithmetic lattices.
Theorem (-, Rajan, Bhagwat '2015)

For $i = 1, 2$ let,

G_i - connected, absolutely almost simple anisotropic algebraic groups defined over a number field K,

$\Gamma_i \subset G_i(K)$ - Characteristically equivalent arithmetic subgroups. Then,

1. The groups G_1 and G_2 are either of the same geometric type or one of them is of type B_n and other is of type C_n for some $n \geq 3$.

2. If the groups are of the same type different from A_n, D_{2n+1} ($n > 1$) or E_6 then the lattices are commensurable.
Theorem (-, Rajan, Bhagwat '2015)

For \(i = 1, 2 \) let,

\(G_i - \text{connected, absolutely almost simple anisotropic algebraic groups defined over a number field } K, \)

\(\Gamma_i \subset G_i(K) - \text{Characteristically equivalent arithmetic subgroups}. \) Then,

1. The groups \(G_1 \) and \(G_2 \) are either of the same geometric type or one of them is of type \(B_n \) and other is of type \(C_n \) for some \(n \geq 3 \).

2. If the groups are of the same type different from \(A_n, \) \(D_{2n+1} \) (\(n > 1 \)) or \(E_6 \) then the lattices are commensurable.

3. In any Characteristic equivalent class of arithmetic lattices, there are only finitely many commensurability classes of arithmetic lattices.
\[\text{RE} \rightarrow \text{Isospectrality} \rightarrow \text{Length commensurability} \]
\[\text{EWC} \rightarrow \text{Commensurability} \rightarrow \text{Weak commensurability} \]
\[\text{Schuanuel’s conj.} \]
When $\mathbb{Q} \cdot L(M_1) \neq \mathbb{Q} \cdot L(M_2)$

In the sequel to their paper on weak commnensurability, Prasad and Rapinchuk analyzed the situation where locally symmetric spaces M_1 and M_2 are not length commensurable. They studied the question how different the sets $\mathbb{Q} \cdot L(M_1)$ and $\mathbb{Q} \cdot L(M_2)$ can be, and can $L(M_1)$ and $L(M_2)$ be related by any reasonable way? To answer this, they have studied the field $\mathbb{F}(M)$ which is a subfield of \mathbb{R} generated by the set $L(M)$, for a Riemannian manifold M. By assuming the validity of Schanuel's conjecture, they proved that these fields determine the commensurability class. Their precise result is,
When $\mathbb{Q} \cdot L(M_1) \neq \mathbb{Q} \cdot L(M_2)$

In the sequel to their paper on weak commensurability, Prasad and Rapinchuk analyzed the situation where locally symmetric spaces M_1 and M_2 are not length commensurable. They studied the question

How different the sets $\mathbb{Q} \cdot L(M_1)$ and $\mathbb{Q} \cdot L(M_2)$ **can be, and can** $L(M_1)$ and $L(M_2)$ **be related by any reasonable way?**
When \(\mathbb{Q} \cdot L(M_1) \neq \mathbb{Q} \cdot L(M_2) \)

In the sequel to their paper on weak commensurability, Prasad and Rapinchuk analyzed the situation where locally symmetric spaces \(M_1 \) and \(M_2 \) are not length commensurable. They studied the question

How different the sets \(\mathbb{Q} \cdot L(M_1) \) and \(\mathbb{Q} \cdot L(M_2) \) can be, and can \(L(M_1) \) and \(L(M_2) \) be related by any reasonable way?

To answer this, they have studied the field \(\mathcal{F}(M) \) which is a subfield of \(\mathbb{R} \) generated by the set \(L(M) \), for a Riemannian manifold \(M \).
When $\mathbb{Q} \cdot L(M_1) \neq \mathbb{Q} \cdot L(M_2)$

In the sequel to their paper on weak commnensurability, Prasad and Rapinchuk analyzed the situation where locally symmetric spaces M_1 and M_2 are not length commensurable. They studied the question

How different the sets $\mathbb{Q} \cdot L(M_1)$ and $\mathbb{Q} \cdot L(M_2)$ can be, and can $L(M_1)$ and $L(M_2)$ be related by any reasonable way?

To answer this, they have studied the field $\mathcal{F}(M)$ which is a subfield of \mathbb{R} generated by the set $L(M)$, for a Riemannian manifold M. By assuming the validity of Schanuel’s conjecture, they proved that these fields determine the commensurability class. Their precise result is,

Theorem

Let $M_i = X_i/\Gamma_i$ be the locally symmetric space, where X_i is a symmetric space corresponding to the absolutely simple real algebraic groups G_i, for $i = 1, 2$. If X_{Γ_1} and X_{Γ_2} are not length commensurable then either $F_1 F_2 / F_1$ or $F_1 F_2 / F_2$ is of infinite transcendence degree.
Splitting fields of the characteristic polynomials

In a recent joint work with C. S Rajan we have examined the similar question in the context of composite of the splitting fields of the characteristic polynomials of (generic regular) elements of Zariski dense subgroups.
Splitting fields of the characteristic polynomials

In a recent joint work with C. S Rajan we have examined the similar question in the context of composite of the splitting fields of the characteristic polynomials of (generic regular) elements of Zariski dense subgroups. Apart from some few exceptions, we show that this field determines the commensurability class of the lattice. We avoid the Schanuel’s conjecture in obtaining this result.
Splitting fields of the characteristic polynomials

In a recent joint work with C. S Rajan we have examined the similar question in the context of composite of the splitting fields of the characteristic polynomials of (generic regular) elements of Zariski dense subgroups. Apart from some few exceptions, we show that this field determines the commensurability class of the lattice. We avoid the Schanuel’s conjecture in obtaining this result.

Notation:
\(G \) - a connected split algebraic group defined over a number field \(K \).
Fix an algebraic closure \(\overline{K} \) of \(K \).
\(T \) - a maximal torus in \(G \) defined over \(K \).
\(\Phi = \Phi(G, T) \subset X^*(T) \) the corresponding root system.
Then the Galois group \(G_K \) preserves the root system \(\Phi \) inducing the homomorphism
\[\theta_T : G_K \to Aut(\Phi(G, T)) \]
Since \(G \) is split, the image lands in the Weyl group \(W(G, T) \).
Definition

A semisimple regular element $g \in G(K)$ is said to be generic K-regular if the torus T_g which is a connected component of the centraliser $Z(g)$ in G satisfies the property that the image $\theta_{T_g}(G_K) = W(G, T)$.

It is known that a finitely generated Zariski dense subgroup $\Gamma \subset G(K)$ contains a generic K-regular element of infinite order.

Let, K_g - the minimal splitting field of the corresponding torus T_g, $K(g, \text{Ad})$ - the splitting field of the characteristic polynomial $P(g, \text{Ad})$ of the linear transformation $\text{Ad}(g)$ then $K_g = K(g, \text{Ad})$.

S. Pisolkar (IWM) Arithmetic aspects of locally symmetric space
Definition

A semisimple regular element \(g \in G(K) \) is said to be generic \(K \)-regular if the torus \(T_g \) which is a connected component of the centraliser \(Z(g) \) in \(G \) satisfies the property that the image \(\theta_{T_g}(G_K) = \mathcal{W}(G, T) \).

It is known that a finitely generated Zariski dense subgroup \(\Gamma \subset G(K) \) contains a generic \(K \)-regular element of infinite order.
Definition

A semisimple regular element $g \in G(K)$ is said to be generic K-regular if the torus T_g which is a connected component the centraliser $Z(g)$ in G satisfies the property that the image $\theta_{T_g}(G_K) = W(G, T)$.

It is known that a finitely generated Zariski dense subgroup $\Gamma \subset G(K)$ contains a generic K-regular element of infinite order. Let,

- K_g - the minimal splitting field of the corresponding torus T_g,
- $K(g, Ad)$ - the splitting field of the characteristic polynomial $P(g, Ad)$ of the linear transformation $Ad(g)$ then

$$K_g = K(g, Ad)$$
Main theorem

Assumptions: (1) G_1 and G_2 - connected, split, absolutely almost simple algebraic groups defined over a number field K.
(2) G_1 and G_2 are not isogenous over \overline{K}.

Call the pair (G_1, G_2) exceptional if one of the following hold:
Main theorem

Assumptions: (1) G_1 and G_2 - connected, split, absolutely almost simple algebraic groups defined over a number field K.

(2) G_1 and G_2 are not isogenous over \overline{K}.

Call the pair (G_1, G_2) exceptional if one of the following hold:

- Both G_1 and G_2 are of the type B_n or C_n, $(n \geq 5)$.
- One of the group is of type B_n/C_n and other is of type D_n, $(n \geq 5$, odd$)$
- Either G_1 or G_2 are of type A_1 or B_2/C_2.
- Either G_1 or G_2 are of type A_2 or G_2.
Main theorem

Assumptions: (1) G_1 and G_2 - connected, split, absolutely almost simple algebraic groups defined over a number field K.
(2) G_1 and G_2 are not isogenous over \overline{K}.

Call the pair (G_1, G_2) exceptional if one of the following hold:

- Both G_1 and G_2 are of the type B_n or C_n, $(n \geq 5)$.
- One of the group is of type B_n/C_n and other is of type D_n, $(n \geq 5$, odd$)$
- Either G_1 or G_2 are of type A_1 or B_2/C_2.
- Either G_1 or G_2 are of type A_2 or G_2.

(3) Suppose $\mathcal{F}_i = \mathcal{F}(\Gamma_i, K)$ be the subfield of \overline{K} given by the composite of the fields K_{γ} where $\gamma \in \Gamma_i$ varies over the set of generic K-regular elements in Γ_i.

Main theorem

Assumptions: (1) G_1 and G_2 - connected, split, absolutely almost simple algebraic groups defined over a number field K.
(2) G_1 and G_2 are not isogenous over \overline{K}.

Call the pair (G_1, G_2) exceptional if one of the following hold:

- Both G_1 and G_2 are of the type B_n or C_n, $(n \geq 5)$.
- One of the group is of type B_n/C_n and other is of type D_n, $(n \geq 5$, odd).
- Either G_1 or G_2 are of type A_1 or B_2/C_2.
- Either G_1 or G_2 are of type A_2 or G_2.

(3) Suppose $F_i = F(\Gamma_i, K)$ be the subfield of \overline{K} given by the composite of the fields K_γ where $\gamma \in \Gamma_i$ varies over the set of generic K-regular elements in Γ_i.

Theorem (-, C. S. Rajan '2016)

Assume that G_1 and G_2 are as above and they do not form an exceptional pair, then the compositum F_1F_2 is of infinite degree over either F_1 or F_2.
Open Problems

- It is not known how to avoid Schanuel’s conjecture in the geometric result of Prasad and Rapinchuk that connects length commensurability to weak commensurability.

- The seemingly weak notion of weak commensurability has many useful applications. For example, suppose, for \(i = 1, 2 \), \(G_i \) is an absolutely almost simple algebraic group over a non-archimedean local field \(F \), then it is known that if the two Zariski dense subgroups \(\Gamma_1 \) and \(\Gamma_2 \) in \(G_1(F) \) and \(G_2(F) \) are weakly commensurable and one of them is discrete then the other is also discrete. But it is not known whether the same is true if \(F = R \) or \(C \).

- Another interesting question is whether weak commensurability preserves cocompactness of the lattices \(\Gamma_i \subset G_i(F) \) when \(F = R \) or \(C \). (In joint work with C. Bhagwat ‘2016 this question is settled in the affirmative for representation equivalent lattices)
Open Problems

- It is not known how to avoid Schanuel’s conjecture in the geometric result of Prasad and Rapinchuk that connects length commensurability to weak commensurability.

- The seemingly weak notion of weak commensurability has many useful applications. For example, suppose, for $i = 1, 2$, G_i is an absolutely almost simple algebraic group over a non-archimedean local field F then it is known that if the two Zariski dense subgroups Γ_1 and Γ_2 in $G_1(F)$ and $G_2(F)$ are weakly commensurable and one of them is discrete then the other is also discrete. But it is not known whether the same is true if F is \mathbb{R} or \mathbb{C}.
Open Problems

- It is not known how to avoid Schanuel’s conjecture in the geometric result of Prasad and Rapinchuk that connects length commensurability to weak commensurability.

- The seemingly weak notion of weak commensurability has many useful applications. For example, suppose, for $i = 1, 2$, G_i is an absolutely almost simple algebraic group over a non-archimedean local field F then it is known that if the two Zariski dense subgroups Γ_1 and Γ_2 in $G_1(F)$ and $G_2(F)$ are weakly commensurable and one of them is discrete then the other is also discrete. But it is not known whether the same is true if F is \mathbb{R} or \mathbb{C}.

- Another interesting question is whether weak commensurability preserves cocompactness of the lattices $\Gamma_i \subset G_i(F)$ when $F = \mathbb{R}$ or \mathbb{C}.

Open Problems

- It is not known how to avoid Schanuel’s conjecture in the geometric result of Prasad and Rapinchuk that connects length commensurability to weak commensurability.

- The seemingly weak notion of weak commensurability has many useful applications. For example, suppose, for \(i = 1, 2 \), \(G_i \) is an absolutely almost simple algebraic group over a non-archimedean local field \(F \) then it is known that if the two Zariski dense subgroups \(\Gamma_1 \) and \(\Gamma_2 \) in \(G_1(F) \) and \(G_2(F) \) are weakly commensurable and one of them is discrete then the other is also discrete. But it is not known whether the same is true if \(F \) is \(\mathbb{R} \) or \(\mathbb{C} \).

- Another interesting question is whether weak commensurability preserves cocompactness of the lattices \(\Gamma_i \subset G_i(F) \) when \(F = \mathbb{R} \) or \(\mathbb{C} \). (In joint work with C. Bhagwat ’2016 this question is settled in the affirmative for representation equivalent lattices)
Thank You!