Composite Fermions And The Fractional Quantum Hall Effect: A Tutorial

Exercises

i. Confirm the commutation relations for the operators a, b, a^\dagger and b^\dagger.

ii. Confirm that the eigenstates for magnetic field pointing in the $-z$ direction are complex conjugates of the above wave functions.

iii. Obtain the second Landau level wave function $|1, m\rangle$.

iv. Show that the polynomial part of the single particle wave function (i.e. the factor multiplying the gaussian) of the nth Landau level involve at most n powers of \bar{z}.

v. Derive

$$\Phi_1 = \prod_{j<k}(z_j - z_k) \exp \left[-\frac{1}{4} \sum_i |z_i|^2 \right]. \quad (1)$$

vi. Show that the wave function of a lowest filled Landau level with a hole in the $m = 0$ state is given by

$$\phi_1^{\text{hole}} = \left(\prod_j z_j \right) \Phi_1 \quad (2)$$

vii. Show that the wave function of a lowest filled Landau level with an additional electron in the second LL in the $m = -1$ state (smallest angular momentum in the second Landau level) is given by

$$\phi_1^{\text{particle}} = \sum_{i=1}^{N} \left[\prod_j (z_i - z_j)^{-1} \right] \bar{z}_i \Phi_1 \quad (3)$$

where the prime denotes the condition $j \neq i$.

viii. Show that the wave function for two filled LLs is given by

$$\Phi_2 = \begin{bmatrix} 1 & 1 & 1 & \cdots \\ z_1 & z_2 & z_3 & \cdots \\ \bar{z}_1 & \bar{z}_2 & \bar{z}_3 & \cdots \\ \ddots & \ddots & \ddots & \cdots \\ z_1^{N/2-1} & z_2^{N/2-1} & z_3^{N/2-1} & \cdots \\ \bar{z}_1 z_1 & \bar{z}_2 z_2 & \bar{z}_3 z_3 & \cdots \\ \ddots & \ddots & \ddots & \cdots \\ \bar{z}_1 z_1^{N/2-1} & \bar{z}_2 z_2^{N/2-1} & \bar{z}_3 z_3^{N/2-1} & \cdots \\ \end{bmatrix} \exp \left[-\frac{1}{4} \sum_i |z_i|^2 \right]. \quad (4)$$

ix. Show that

$$\phi_\eta(r) = \frac{1}{\sqrt{2\pi}} \exp \left[\frac{1}{2} \eta z - \frac{1}{4} |z|^2 - \frac{1}{4} |\eta|^2 \right] \quad (5)$$

is a coherent state, i.e. is an eigenstate of the angular momentum lowering operator b. Show that it represents a wave packet localized at η.
x. Obtain the solution for an electron in a parabolic confinement potential in the presence of a magnetic field

\[H = \frac{1}{2m_b} \left(p + \frac{e}{c} A \right)^2 + \frac{1}{2} m_b \omega_0^2 (x^2 + y^2) \]

(6)

where \(\omega_0 \) is a measure of the strength of the confinement. The solutions are known as Fock-Darwin levels.

xi. Evaluate the Berry phase for the localized wave packet given in Eq. 5 for a circular loop and show that it is equal to the Aharonov-Bohm phase.

xii. Show that the ground state wave function of one filled \(\Lambda \) level of composite fermions \((\nu^* = 1) \) is identical to Laughlin’s wave function

\[\Psi_{1/m} = \prod_{j<k} (z_j - z_k)^m \exp \left[-\frac{1}{4} \sum_i |z_i|^2 \right] \]

(7)

at \(\nu = 1/(2p + 1) \). No lowest Landau level projection is needed in this case.

xiii. We ask how a single particle orbital is modified by adiabatic insertion of a point flux tube. Obtain the solution for the Hamiltonian

\[H(\alpha) = \frac{1}{2m_b} \left(p + \frac{e}{c} A + \frac{e}{c} a_\alpha \right)^2 \]

(8)

where

\[a_\alpha = \frac{\alpha}{2\pi} \phi_0 \nabla \theta \]

(9)

produces a flux of strength \(\alpha \phi_0 \) at the origin. (Hint: This can be solved by a gauge transformation, while making sure that it is the physical wave function is single valued.) Then ask how an orbital evolves as we increase \(\alpha \) from \(0 \) to \(1 \).

xiv. We derived the wave functions for the hole and particle of \(\nu = 1 \) state. Construct the corresponding wave functions for the CF-quasihole and the CF-quasiparticle at \(\nu^* = 1 \). Then go ahead and construct the wave functions for two CF-quasiholes and two CF-quasiparticles in the innermost angular momentum states.

xv. Prove

\[\mathcal{P}_{LLL} e^{-\frac{i}{2} z^2 z^m z^s} = e^{-\frac{i}{2} \hat{z} z^m} \left(\frac{\partial}{\partial z} z^s \right)^m \]

(10)

(where \(\mathcal{P}_{LLL} \) is the lowest Landau level projection operator) by two methods. (i) Noting that the projection is nonzero only for the lowest Landau level orbital with angular momentum \(s - m \), evaluate its coefficient by using completeness relation. (ii) Consider \(\bar{z}^m \phi \), where \(\phi \) is an arbitrary lowest Landau level wave function. Express \(\bar{z} \) in terms of ladder operators and show that the lowest Landau level projection produces \((\sqrt{2}b)^m \phi \).

xvi. Prove that for any operator \(V(z, \bar{z}) \), \(V_p \) defined as

\[V_p(\bar{z}, z) = :V \left(\bar{z} \rightarrow 2 \frac{\partial}{\partial z}, z \right): \]

(11)

has the same matrix elements within the lowest Landau level. Here the normal ordering symbol : : indicates that we bring all \(\bar{z} \)'s to the left of the \(z \)'s, and then make the replacement \(\bar{z} \rightarrow 2\partial/\partial z \) with the understanding that the derivatives do not act on the gaussian factor. \(V_p \) defines the lowest Landau level projection of \(V \), because when applied to a lowest Landau level state, it causes no mixing with higher Landau level states.

xvii. Show that \(x_p \) and \(y_p \), the projected coordinates, obey the commutator

\[[x_p, y_p] = it^2 \]

(12)

The lowest Landau level space is said to be non-commutative.

xviii. Obtain the relative braid statistics of a quasiparticle going around a quasihole. Assuming that an exciton produces no statistical phase, deduce the braid statistics for quasiholes. Finally, show that a bound state of \(2p_n \pm 1 \) quasiparticles has the same charge and braid statistics as an electron.